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ABSTRACT

The annealing algorithm is a popular Monte-Carlo algorithm for combina-
torial optimization. The annealing algorithm consists of simulating a nonsta-
tionary finite state Markov chain whose state space is the domain of the cost
function, called energy, to be minimized. The degree of randomization in the
annealing algorithm is controlled by a parameter, called temperature, which is
slowly decreased to zero. The convergence in probability and the rate of con-
vergence of the annealing chain for the special case of an energy function
with two local minima is analyzed. The sample path properties of annealing
chains (with arbitrary energy functions) are examined. A modification of the
annealing algorithm which makes noisy measurements of the energy function
is given. The annealing algorithm is extended for optimization on general
spaces.

The Langevin algorithm is a popular Monte-Carlo algorithm for multivariate
optimization. The Langevin algorithm consists of simulating a nonstationary
diffusion process. The relationship between the annealing and Langevin algo-
rithms is studied. It is shown that an annealing chain driven by white Gaus-
sian noise and interpolated into a piecewise constant process converges
weakly to a time-scaled Langevin diffusion. Motivated by this result, a hybrid
annealing/Langevin algorithm is proposed.

Thesis Supervisor: Dr. Sanjoy K. Mitter

Title: Professor of Electrical Engineering
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FREQUENTLY USED NOTATION

X, the natural numbers

If, r-dimensional Euclidean space

r', Borel subsets of If

Cr1O,T], IV'-valued continuous functions on [0,T]

Dr[o,TJ, r-valued ca'dlaig functions on [0,T]

9 N(m,A) (-), Normal measure with mean m and covariance A

XA(-), indicator function of the set A

B(a,R), ball of radius R centered at a

lxEuclidean norm of x

(x,y), Euclidean inner product of x,y

x® y, Euclidean outer product of x,y

a.e., almost everywhere

w.p.1, with probability one

i.o.,, infinately often

a.a., almost always
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If {ak} and {bk} are sequences of real numbers with ak 9- 0 for k large

enough then

bk =O(ak) if urn sup Ib <0
k-oo ak

bk= O(ak) if ur =
k--ooo ak

bk
bk - ak if urn -

k-.oo ak
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CHAPTER I
INTRODUCTION

Algorithms for finding a global extremum of a real-valued function may
be classified into two groups: deterministic and random. The distinction here Z

is of course that the random or Monte-Carlo algorithms make use of pseudo %

random variates whereas the deterministic algorithms do not. The earliest %

global optimization algorithms were of the deterministic type and were
associated with evaluating the cost function at points on a grid. One
drawback of these methods is that they typically require certain prior
information about the cost function such as a Lipshitz constant. Most global
optimization algorithms are of the random type and are related to the so-

called multistart algorithm. In this approach, a local optimization algorithm
is run from different starting points which are selected at random, usually
from a uniform distribution on the domain of the cost function. See [5], [29]
for a discussion of global optimization algorithms.

Recently, motivated by hard combinatorial optimization problems such
as arise in computer design and operations research, Kirkpatrick et. al. [19]
and independently Cerny [3] have proposed a different kind of random 0

algorithm called simulated annealing. The annealing algorithm is based on an
analogy between large scale optimization problems and statistical mechanics.
For our purposes this analogy consists simply of viewing the cost function is
an energy function defined on a finite state space of an imaginary physical
system. The annealing algorithm is then seen as a variation on a Monte-
Carlo algorithm developed by Metropolis et. al. [25] for making statistical
mechanics calculations, which we now describe. It is well-known that the
states of a physical system in thermal equilibrium obey a Gibbs distribution
oc exp[-U(')/T], where U(') is an energy function and T is the temperature.
The Metropolis algorithm was developed for obtaining samples from such a
Gibbs distribution and for computing estimates of functionals averaged over
the Gibbs distribution. The Metropolis algorithm proceeds as follows:

Given a state i of the system, select a candidate state j in a random
manner corresponding to a small perturbation of the system, and

%- 
-
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compute the change in energy AU = U(j) - U(i). If AU < 0 accept
state j as the new state for the next iteration of the algorithm. If
AU > 0 accept state j with probability exp[- AU/T]; otherwise the
algorithm starts at state i for the next iteration.

The annealing algorithm consists of identifying the cost function to be
minimized with the energy function U(') and taking the temperature T as a
function of time and slowly lowering it to zero. Suppose that the distribution
of a candidate state is independent of past states given the current state.
Then it is clear that the Metropolis algorithm simulates the sample paths of a
Markov chain, and it can be shown that if the candidate states are selected
in a suitable manner then this chain infact has a Gibbs distribution
c< exp[- U(i)/T] as its (unique) equilibrium distribution (see Chapter 2 for
details). Furthermore as the temperature T is decreased to zero the Gibbs
distribution concentrates more and more on the lower energy states. The
motivation behind the annealing algorithm is that if T--0 slowly enough such
that the system is never far away from equilibrium, then presumably there is
convergence (in some probabilistic sense) to the global minima of U(-).

The annealing algorithm stands in contrast to heuristic methods for
combinatorial optimization which are based on iterative improvement,
allowing only decreases in the cost function at each iteration. Iterative
improvement algorithms in statistical mechanics terms correspond to rapidly
quenching a system from a high to a very low temperature. Such quenching
can result in the system getting trapped in a so-called metastable state, and
analogously the iterative improvement algorithm getting trapped in a strictly
local minimum of the cost function. On the other hand, the annealing
algorithm corresponds to slowly cooling a system. Such cooling should result
in the system spending most of its time among low energy states and
analogously the annealing algorithm finding a global or nearly global
minimum of the cost function.

The annealing algorithm as described above is suitable for combinatorial
optimization. Motivated by optimization problems with continuous variables
which arise in image processing problems, Geman and independently

Grenander [131 have proposed a diffusion-type algorithm called the Langevin
algorithm (as coined by Gidas [11]). Consider the diffusion solution of the
Langevin equation

dx(t)-=- VU(x(t))dt + VlY dw(t)

where U(-) is now a smooth function on r-dimensional Euclidean space (again
called energy), T is a positive constant (again called temperature), and w(') is

7, 1 . ,, • ".=. .. . -=-- ". ". " ' " " % "." " " .°% - " . "" "" % % % '.%, '"%"" - % % % _r -t



a standard r-dimensional Wiener process. The Langevin equation describes

the motion of a particle in a viscous fluid. The Langevin algorithm consists of
identifying the cost function to be minimized with the energy function U(')
and taking the temperature T as a function of time and slowly lowering it to
zero. Now it is well known that under suitable conditions on U(') the
diffusion solution of the Langevin equation has a Gibbs density
oc exp[- U(')/T] as its (unique) equilibrium density, and as the temperature T .4

is decreased to zero this density becomes more and more concentrated on the
lower energy states. Like the annealing algorithm, the motivation behind the
Langevin algorithm is that if T--+O slowly enough such that the system is
never far away from equilibrium, then presumably there is convergence (in
some probabilistic sense) to the global minima of U(').

The annealing algorithm has been applied with varying success to a wide .

range of problems including circuit placement and wire routing for VLSI chip
design [19], image reconstruction [8], and assorted hard combinatorial

problems which arise in operations research [3], [12], [18], [19]. There has also
been intense theoretical interest in both the annealing algorithm [8], [10], [11],
[14], [15], [26], [31] and the Langevin algorithm [4], [9], [11], [15], [21]. .

The goal of this thesis may simply be stated as the analysis of the
asymptotic (large time) behavior of simulated annealing type algorithms, by
which we mean not only the annealing algorithm but also the Langevin and
related algorithms. We are particularly interested in the relationship between
the annealing and Langevin algorithms. Here' is a Chapter-by-Chapter

outline of the thesis. o
In Chapter 2 we discuss the finite state annealing algorithm as proposed

by Kirkpatrick and independently by Cerny. In 2.1 we give a precise
description of the annealing chain (the Markov chain whose sample paths are
simulated in the annealing algorithm). We then briefly discuss two numerical
studies of the annealing algorithm by Johnson et. al. [18] and Golden and 0

Skiscim [12], and next describe some of the large body of theoretical work on

the subject with particular emphasis on the work of Mitra et. al. [26] and

Hajek [14]. In 2.2 we study the asymptotic behavior of a class of
nonstationary finite state Markov chains in preparation for the analysis of the

annealing algorithm itself. In 2.3 we use the results of 2.2 to analyze the -.
annealing algorithm. We first examine in depth the convergence in

probability and the rate of convergence of the annealing chain to the globally 4.

minimum energy state for an energy function with two local minima (one
strictly local and one global). Although cost functions encountered in large 0

scale combinational problems may have large numbers of local minima, the

V--.
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results we present are new and offer some interesting insights. We next
perform a sample path analysis of the annealing chain and obtain conditions
under which the annealing chain visits the set of global minima of the energy
function with probability one, visits the set of global minima with probability
strictly less than one, or converges to the set of global minima with
probability one. These results are different than most of the analytical results
on the annealing algorithm, which give conditions under which the annealing
chain converges to the set of global minima in probability. In 2.4 we describe
and analyze a modification of the annealing algorithm which uses noisy
measurements of the energy function.

In Chapter 3 we extend the annealing algorithm for optimization on

general spaces. In 3.1 we give a precise description of a general state
annealing chain. In 3.2 we discuss the ergodicity of the general state
annealing chain at a fixed temperature, i.e., we discuss a general state version
of the Metropolis algorithm. Here we settle some technical issues which do
not arise in the finite state Metropolis algorithm. In 3.3 we study the
asymptotic behavior of a class of nonstationary general state Markov chains
in preparation for the analysis of the general state annealing algorithm itself.
In 3.4 we use the results of 3.3 to extend the result of 2.3 on the finite state . -
annealing chain visiting the set of global minima of the energy function with
probability one to the general state case, essentially under the conditions that
the state space be a compact metric space and the energy function be
continuous. It is not known whether convergence to the set of global minima
in probability can be obtained under such weak conditions.

In Chapter 4 we discuss the Langevin algorithm as proposed by Geman
and independently by Grenander. In 4.1 we give a precise description of the
Langevin algorithm and summarize the convergence results of Geman and
Hwang [9], Gidas [11], and Kushner [21]. In 4.2, 4.3 we present what we
believe to be the most interesting results of the thesis. In 4.2 we show that an
annealing chain of the type considered in Chapter 3 with r-dimensional
Euclidean state space and driven by white Gaussian noise converges in a
certain sense to a Langevin diffusion. In 4.3 we propose a hybrid
annealing/Langevin algorithm based on the results of 4.2. We argue that the
hybrid algorithm enjoys the advantages of both the annealing and Langevin
algorithms. Unfortunately, we have not yet succeeded in establishing the
convergence of the hybrid algorithm and this is left as a future task.

In Chapter 5 we collect the results of the thesis and make some
concluding remarks.

' ,,,.,J .
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CHAPTER 11
FINITE STATE ANNEALING TYPE ALGORITHMS

% '-

2.1 Introduction to the Annealing Algorithm

In Chapter 1 we briefly described the annealing algorithm and discussed
the heuristic motivation based on the connection that Kirkpatrick [191 has
suggested between statistical mechanics and large-scale optimization
problems. Mathematically, the annealing algorithm consists of simulating a
nonstationary finite-state Markov chain whose state space is the domain of
the cost function (called energy) to be minimized. In this Section we shall
discuss in detail the annealing algorithm and describe some of the
considerable literature which has been devoted to its analysis. :a .

We first give some standard finite state space Markov chain notation (c.f. '-

[61, [71). Let E be a finite set. P = JPjjjs is a stochastic matrix on E if

pi 0 for all i,jWE andPij > EF

jEt
Pij~kl~ = 1 V i E.'k'1:1)

{p(k~k+1)} = {[pi~k~k )]} are the 1-step transition matrices for a Markov chain

{ j with state space E if for every kEN p(k,k+1) is a stochastic matrix on E
and .--

P{k+l = k = i} = pi ) (if P{ k = i} > 0) (2.1)

for all i,j . Conversely, given a sequence {p(kk+1)} = {[p1(kk+d)j} of
stochastic matrices on E we can construct on a suitable probability space .-
(A,F,P) a Markov chain {Vk} with state space E which satisfies (2.1). For

each dEN let

p(kk+d) - p(kk+l) p(k+d-lk+d)

p~k,k+d)- [pi~k 'k+d)] is a stochastic matrix on E and

P{ k+d Jkk = i} = -{k'+d) (if P{M = i} > 0)

for all i,jWE. It will be convenient to have a fixed version of the conditional
probability of k+d given k which we define by

_ %* _a,
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,(k,k+d) 1
P{ k+dEAkk - - Pik' dj

jEA

for all iEE and ACE.

We now define the annealing algorithm. Let U(') be a nonnegative "

function on E, called the energy function. The goal is to find a point in E
which minimizes or nearly minimizes U('). Let {Tk} be a sequence of positive

numbers, called the temperature schedule. Let Q = [qij] be a stochastic matrix
on E. Now let {k} be the Markov chain with state space E and 1-step
transition matrices {p(k,k+l} = {[piJ,k+l)]} given by

qj% exp[- U(j)- (i)1 if U(j) > U(i)T k ,"

Pk 'k+1) qj if U(j) < U(i), j5i (2.2)

1-- k - if j =i

for all ijEE. { k} shall be called the annealing chain. For each dEN let

qd =-- [qd)]. Recall that Q is irreducible if for every i,jEE there exists a dE.-"
such that qj(d) > 0. Also, Q is symmetric if qij = qji for all i,jEE. In the

special case where Q is irreducible and symmetric and Tk = T, a positive
constant, { k} is the stationary Markov clhain introduced by Metropolis et. al.
[251 for computing statistics of a physical system in thermal equilibrium at
temperature T. It was Kirkpatrick et. al. [19] and Cerny [3] who suggested
that the Metropolis scheme could be used for minimizing U(') by letting 0
T = Tk -* 0. We shall call the algorithm which simulates the sample paths
of {Vk} with Tk--O the annealing algorithm.

The heuristic motivation behind the annealing algorithm was discussed
(briefly) in Chapter 1. Here we give the motivation in more mathematical
terms. Suppose that Q is irreducible and symmetric, and let {T} be the
stationary chain with 1-step (stationary) transition matrix pT = [pT] given by
the r.h.s of (2.2) with Tk = T, a positive constant. Then it can be shown that
pT has an invariant Gibbs vector HT [T T (a row vector), i.e.,

[T - IjTpT

where

'

;?v

. , " .- - . - . ' - ., , - --
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% %

=riT exp I- U(i)/T V iEE.

E exp [- U(j)/T] ,
E,

This follows from the detailed reversibility %

T T TT Vi =i7rj Pi Vi,jE.

Furthermore, Q irreducible and symmetric implies that { T} is an irreduciblet %

(and aperiodic) chain and by the Markov Convergence Theorem (6, p. 177.

lim p{k _ i = 7T V iEE. (2.3)k--oo %--

Let S be the set of global minima of U('), i.e.

S = {iE: U(i) U(j) V jE)}

Now

lim 7.T = 7ri* V iEE (2.4)
There f

where W* = [-ri*] is a probability vector with support in S. In view of (2.3)

and (2.4) the idea behind the annealing algorithm is that by choosing "".-

T = Tk--O slowly enough hopefully

P{ k = } T (k large) (2.5)

and then perhaps

lim P{ k = i} = 7ri  V iEE (2.6)
k--oo (

and consequently k converges in probability to S.

In Chapter 1 we roughly described the procedure by which the sample
paths of the annealing chain are simulated. It is seen that the Q matrix

governs the small perturbations in the system configurations which are then
accepted or rejected probabilistically depending on the corresponding energy
changes and the temperature. More precisely, the annealing chain may be
simulated as follows. Suppose k = i. Then generate a Z-valued random

variable I with P{7 = j} = qij. Suppose 77 = j. Then set

tA stationary chain is irreducible if its 1-step (stationary) transition matrix is
irreducible. A

% % %% %
%-'
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j if U(j) < U(i)

k+l J if U(j) > U(i) with probability exp U(j) - U(i)
Tk ,,

i else

There are two in depth numerical studies of simulated annealing of which
we are aware. Johnson et. al. [18] applied the annealing algorithm to four
well-studied problems in combinational optimization: graph partitioning,

number partitioning, graph coloring, and the travelling salesman problem.
They compare the annealing algorithm with the best of the traditional
algorithms for each problem. They found that although annealing is able to
produce quite good solutions on three of the four problems, only on one of the
four (graph partitioning) does it outperform the best of its rivals. Golden and
Skiscim [12] have tested the annealing algorithm on routing and location
problems, specifically the travelling salesman problem and the p-median
problem. They conclude that there are more efficient and effective heuristics
for these problems.

We shall now outline the convergence results on the annealing algorithm
which are known to us. We refer the reader to the specific papers for full
details.

Geman and Geman [8] were the first to obtain a convergence result for
the annealing algorithm. The consider a version of the annealing algorithm
which they call the Gibbs sampler. They show that for temperature schedules

of the form

Sc (k large)

Tk -- log k

that if c is sufficiently large then (2.6) is obtained.

Gidas [10] also considers the convergence of the annealing algorithm and 0

similar algorithms based on Markov chain sampling methods related to the
Metropolis method.

We next discuss the work of Mitra et. al. [26]. The idea behind their
work is similar to that of Geman and Geman and also Gidas in that they
show that for temperature schedules which vary slowly enough the annealing Il

chain reaches "quasiequilibrium", i.e., something like (2.5) holds. In order to
state Mitra et. al.'s result we will need the following notation. Let

€ 'm lg ~ - l ' a ' c € Q m ' • . . " ¢ • . .- ." - . .- € - - o " . • " .s - . .. .- . • . . o o o • - - . " " .- - - .'

.-, , e m _ e m  .- ., # ' o. ,, -.e # "., € o o -# ", . . . . . , .. .. . . . . . . . . . . .. .

a , t , , , o . % ' .% ' 'o", ' ' ' ' ., , . ' , ' . . "- • -" . '. . " . . ". ' " ' ' .' .' . '. '- '- ' ' ' " ' ." ". ' ' ' ' " ", " " " .' S
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N(i) ={jEi : qj > 0} V iEE.

Let SM be the set of states that are local maxima of U('), i.e.,

SM= {iEF: U(i) U(j) V jEN(i)} ."

Let

r min max d(ij)
iEE\SM E..

where d(ij) is the minimum number of steps to get from state i to state j.

Finally, let

L = max max iU(j) - U(i)l.
iEE jEN(i)

Here is Mitra et. al.'s result:

Theorem 2.1 (Mitra et. al. [26]) Assume Q is irreducible and symmetrict.
Let TkIO and

rcL ..exp o0o. (2.7) ,''

k- 1 Tkr-1

Then A.r

lim P{k - i} -r i= V iEEZ (2.8)

Remarks

(1) If Tk = c/log k then (2.7) holds iff c > r L.

(2) An estimate of the rate of convergence in (2.8) is obtained for .%

annealing schedules of the form Tk = c/log k for c > r L. Let

w = min min %
iEL jEN(i) ...

min U(i) - min U(j).
IEL\s jES

It is shown that

P{k =i + -as k-\ (2.9)

where

tor jiut qij > 0 iff qji > 0 for all i,jG '

%?

%
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w h

wr

r L/c '
'

Since a and 3 are increasing and decreasing respectively with increasing c, it
is suggested that c > r L be chosen to maximize min{Q,3}. ,,

We next discuss the work of Hajek [141. The idea behind his work is

that for temperature schedules which vary slowly enough, the annealing chain
escapes from local minima of U(') at essentially the same rate as for a s-

constant temperature. In order to state Hajek's result we will need the
following notation. We shall say that given states i and j, i can reach j if
there exists a sequence of states i = i,...,ip = j such that qii,1  > 0 for all

n - 0,...,p-1; if U(i.) E (a nonnegative number) for all n = 0,...,p then we

shall say that i can reach j at height E. We shall say that the annealing

chain is strongly irreducible if i can reach j for all i,jE. Clearly, strong
irreducibility is equivalent to Q irreducible, but we introduce strong

irreducibility to conform with Hajek's notation. We shall also say that the
annealing chain is weakly reversible if for every E > 0, i can reach j at energy
E iff j can reach i at energy E, for all i,jWE. Let Sm be the states that are

local minima of U('), i.e.,

S. = {iEY- : U(i) _ U(j) V jEN(i)}

For each iESm\S let A(i) be the smallest number E such that i can reach some

jEE with U(j) < U(i) at height U(i) + E. A(i) is the "depth" of the local (but
not global) minimum i. Let

max A(i) . (2.10)
iE,\S

Here is Hajek's result:

Theorem 2.2 (Hajek [14]) Assume that the annealing chain is strongly
irreducible and weakly reversible. Let TkJO. Then -

Jim P{ kES} 1 (2.11)

iff

N1 exp - (2.12)
~.,1%

.-

A.



R em ark If T k = c/log k then (2.12) and hence (2.11) holds iff c > A '. For

this reason A* has been called the optimal constant and Tk = A*/log k the

optimal schedule.

We should also mention that Tsitsiklis 130] has proved of generalization

of Theorem 2.2 which does not assume weak reversibility, using (and
extending) the theory of singularly perturbed Markov chains.

In view of Theorem 2.2 and the refinement in [30], the analysis of the

convergence in probability of the annealing algorithm is essentially complete,

with the exception that it does not appear that anyone has determined the

rate of convergence for optimal or nearly optimal temperature schedules.
Recall that Mitra et. al. have shown that (2.9) holds if

__c

Tk-crL
log k %

b u t r L is in gen era l m u ch la rger th a n *. In 2.2, 2.3 w e sh all a n a ly ze the

rate of convergence in probability of the annealing algorithm for a special
case with two local minima. We will obtain results on the convergence rate

for nonparametric temperature schedules (schedules not of the form

T k = c/log k) and also for tem perature schedules T k = c/log k for c > z, .

We remark that in the latter case with c = A* there is apparently some

interesting and unexpected behavior. Our results are different although

consistent with (2.9).

Also in 2.2, 2.3 we shall explore the sample path behavior (as opposed to
the ensemble behavior) of the annealing algorithm. We shall give a number

of results, the most important of which is conditions such that the annealing
chain visit the set S (infinitely often) with probability one. Suppose we let

J k+l if U(~k+l < U'k
fk+1 l k else

N o te t h a t if { k } v is its S w it h p r o b a b ility o n e t h e n {k } t r a p s in S w it h

probability one, and furthermore no additional evaluations of U(-) are %

required to com pute {qk} over w hat are required to sim ulate 11k'. H ence by

just doubling the m em ory requirem ents and keeping track of /'?kk, it seem s

s u ff ic ie n t to s h o w th a t {Z k} v is it S w ith p ro b a b ility o n e ra th e r th a n c o n v e rg e

to S in probability. Now it might be imagined that the conditions on the

tem perature 
schedule 

under 
which 

{ c Viis 
S w t i p o a ilt•n 

r

t-, 

viistw 

t 
r b 

biiy 

o e a c..

% %. %
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weaker than those under which { k} converges to S in probability. However,
the proof of Theorem 2.2 shows that (assuming strong irreducibility and weak
reversibility) {k} visits S with probability one iff (2.12) holds. From this
point of view our result does not offer anything new; infact the temperature
schedules we consider are not even optimal. However, we believe our result is
important in the following sense. In Chapter 3 we extend the annealing
algorithm to general state spaces. It turns out that our result on the finite
state annealing chain visiting S infinitely often with probability one can also
be extended, essentially under the condition that the state space be a
compact metric space and the energy function be continuous. It is not clear
whether convergence to S in probability can be shown in such a general
setting; the methods used to analyze the finite state case (quasiequilibrium
distributions, large deviations and perturbation theory) do not seem directly
applicable.

Finally, in 2.4 we give a modification of the annealing algorithm which
allows for noisy measurements of the energy function and examine its
convergence.

2.2 Asymptotic Analysis of a Class of Nonstationary Markov Chains

In this Section we analyze the asymptotic properties of a certain class of

nonstationary (finite state) Markov chains. These chains will have the
property that their 1-step transition probabilities will satisfy bounds similar
to those satisfied by the d-step transition probabilities of the annealing chain.
The results of this Section will be used in 2.3 to deduce corresponding
asymptotic properties of the annealing chain.

We shall consider the following class of Markov chains. Let Ei be a finite
set. Let aij, Oij E [0,Oc] for i,jE, and {Ok} a sequence of real numbers with
0 < Ok 1. Let {fk} be a Markov chain with state space E and 1-step
transition matrices {p(kk+l)} . {[pi(k,k+1)]} with the following property: there

exists positive numbers A, B such that %

A(k'k+l) > A ' (2.13)'(2:1

(k,k+ 1) Bpk B Ok (2.14)

for all i,jEE. Actually, we shall assume that (2.13) and/or (2.14) hold

depending on the result we wish to prove.

%
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2.2.1 Convergence in Probability and Rate of Convergence for a

Three State System

We now establish the convergence in probability and rate of convergence

of a Markov chain { k} with state space E .which satisfies (2.13) and (2.14) for

a special case with Il = 3. In 2.3.2 we shall apply this result to the

annealing chain with an energy function which has two local minima. It will

be userul here to consider the more detailed bounds
ai. < Pk,k+l) < 13,jki , ,Aij'ko <--- Pi V i,jEE , (2.15)

where Aij, Bij are positive constants. Here is our theorem.

Theorem 2.3 Let E = {1,2,3} and assume that (2.15) holds. Let

a = max{oC2 1 , 0'3 1 1 < 00.

b = min{)3 12, 013} > a 4.
b -a ,

min{A2 ,, A31} if C21 = o 3

,,-A 2 1  if Oa2 1 > a3 .

A31  if Ce2l< C3 1 .

.

(a) Suppose that Ok1O and

000

Then

lim P{ k 1} 1

(b) Suppose (more strongly) that OkJO and there exists a sequence {Ek}

with 0 < Ek < 1 and Ek- 1 such that

k
on +-2 log Ok -c as k---c, (2.17)

n - 'k,%-

k' f

sup K c. (2.18)
k Ok

Then

.- p

unn uu~n mm i hi laaN~ilidn11l I i| k d - '
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P{k- 1}-1 + O() as k-.oo

The proof of Theorem 2.3 will require the following lemmas.

Lemma 2.1 Let {Sk) be a sequence of positive numbers with sk- -+ and p.,.

E~ Sk 00
k-1

Then

00 k-i
E Sk 17 (1 S) < .-

k-I n-I

Proof Let
k

p.qJ

Sk = Z sk

Now since sk--+O and Sk--oo we have

exp(- Ski1) = exp(sk) exp(- Sk) 

for some constant c. Hence

00 k-I 00 VE sk 1I (1--SO)_< E sk exp(-Sk-1) ?7

k-i n-i k-i

k-i Sk

< 00

where the convergence of the last series follows from the Abel-Dini Theorem S

[20, p. 2901. 1

Lemma 2.2 Let b > a > 0 and assume that 0kJ0 and

k-i "

Then

%S
O.0 t

*,1.

V '.e .:_'.,.'.'', .'e., .d .. ; .''' ' ¢2 •  -,''2 '-"". ," .'.:._'" ".".".,"-"-","'." "'" '-,"-:,.'':. .': ":'0:

WV - - - ,. #. - . . • , , . $7 ," ," % '.% ' . * % . .' ' %* %'. % .
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k k
lir E M I (1- 0)-.

k-P m-1 n-m+I

Proof Let 4

k b k
Pk E O o= I (-On').

m-1 n-m+1

Let sk = 0. Then for KEN 

k k"-'

Pk In Sm/a H (1 S) F.

m-1 n-m+-

k k k< K s b/a rl (1 - Sn) + i +1 Sm H (1 -sn) Vk>K,
n-K ra-i n-M+ n--

where -= b - a >0. Hence U.-

k k
lim SUP Pk -  +j SUP E Sm HI (1 -s) (2.20)

k-o-oo k rn-i n-n-i-

since
00 00

i (1-s.)= F (1- 0.)=o
n-K n-K ,.

which follows from (2.19). Now

k k k m-I
Sm lrn (1--Sn) Z Sm II (i-sn)

m-i n-m+i r-I n-i

which is established by induction on k. Hence by Lemma 2.1

k k
SUp r Sm  jI (1 -sn) < c. (2.21)

k M-i n-M+i

Combining (2.20), (2.21) and letting K--oo (so that j+1-0) gives Pk-- 0 as
required. 0

Lemma 2.3 Let b > a > 0, 'y b - a, and assume that OkI0 and there

exib a sequence {k} with 0 < (k < 1 and Ek--* such that

k'q

sUp < 00. (2.22)
k O

Then

I.?
--. 4..
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k k

0 17 (1 0- ) (0^) as
mr-k.k n-m+l. Pl

Proof Let

k k
Pk =  E Omb  rI (1 - o).

m-k'k n-m+i

Let Sk = Ok. Then

k k 'b/a
Pk E Sm I (1-s.)

m-k'ck n-m+l

k k
<0"1 E sm I (1-S). (2.23)

rn k M-i n-m+"

Now

k k k m-1
E Sm  1l (1 Sn) E Sm H (1-Sn)

m-I n-m+l m-i n-I

which is established by induction on k. Hence by Lemma 2.1 there exists a

constant c1 such that

k k

Sm -I (1 -SO-s)< c,. (2.24)
m-i n-m+.

Also from (2.22) there exists a constant c2 such that

01 < c2 • 0. (2.25) 0

Combining (2.23)-(2.25) gives Pk 0(0") as required. 0

Proof of Theorem 2.3

(a) Define the events -

Cm,n n- {kE{2,3}} V n > m , (2.26)
k~ ra

Dmn = {m= 1} n Cm+n Vn > m. (2.27)

Then

k-i

{VkG{2,3}}- Ck U U Dm,k

and
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P{ kE{2,3}} = C1,k + E PDn,k (2.28)

Now using the lower bound in (2.15) and the Markov property, for iE{2,3} - '

k-i
P{(Crkkr I = '1 :5 P{ M = i} 11 max =+ iI~n I}

k-I
S j i1- min P{ +E{2,31k ==i}jI

n-rn (~ -j-2,3)

<k-I - j~%

_l Vk>m, (2.29)
n-rn

for some constant cl. Also, using the upper bound in (2.15), the Markov

property, and (2.29)

PDrnk P{. m = 1) PIPI'1 ri{rn+,kI~m+I 1f)4
i-2,3

f. k-1
< 2 max Bi 6 m" ci rj (1i-8

i-2,3 nr+

n-rnM+i

for some constant C2 . Hence from (2.29) and (2.16)

lim PCI,k CI c1 . 7 (1 - 506.)
k--ooo n-i

=0 (2.31)

and from (2.30) and Lemma 2.2

k-i k-i mbk-i
lrn E PDr,k< liM C2* E] fl7 (1 -6 0) V

k-too rn-i1 k-oo rn-i n-rn+i

0. (2.32)

Combining (2.28), (2.31), and (2.32) gives P{~k = 1}-1 as required.

(b) Define Crn,., D rnn as in (2.26), (2.27). Then

e 'r r. *%



26

k-I

{~kE{2,3}} C kt U U D~
rn-k~fk

and
k-1

P{ kE{2,3}} PC + E PD 1 . (2.33)
kek,k k

rn-k *fk

From (2.29) we have IV

k-i.4
PC <c, f (1 - 6 0).9

k~e,k - -~t

k-i ta
<c Iexp 8. On

n-kIek

-c, exp (60ka) exp [0'8 + log Ok) Ok

0 (0"7) as k--oo, (2.34)

where the last equality follows from Ok'-,.O and (2.17). From (2.30) and

Lemma 2.20

k-i k-i k-i%

rn-k~fk m-k~fk n-rn+i

0 O(60 as k-~oo. (2.35)0

Combining (2.33)-(2.35) gives P{ k =1} 1 ± 0(0") as required. 0

The following corollary considers a choice of (0k) which will be seen to
correspond to a temperature schedule Tk =c/log k for the annealing
algorithm.

% N.% N..
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J,.

Corollary 2.1 Let E, a, b, -y, and 3 be given as in Theorem 2.3. Assume '4

that
.'61 ..

k- k/c

where c is a positive constant. N'I

(a) If c > a then

lir P{ k I} = 1
k--o

(b) If c > a then

P{k = 1} 1 + O(0) as k-oo. .

(c) If c = a then

1 +O(GO) if y<

P{ k = 1} - + O (( log k) if j --

+ o(01) if -y> 6, as k--*o.
k4.

Proof We shall assume that c 1 1; the general case follows easily.

(a) If a < 1 then

00 00 1
E Ok= E , =~

k-I k-I -.

and Theorem 2.3(a) applies.

(b) Suppose a < 1. To apply Theorem 2.3(b) we must construct a

sequence {Ek} with 0 < Ek < 1 and Ek--l such that conditions (2.17), (2.18)

are satisfied. Fix 0 < q < 1-a and let

1
k k- (k large) .

Then for sufficiently large k -.

-.4.

..

4
j 4 .. - 4 . . 4 6 ( 4 4 . . .- . . . . . . . . . ... . .. . , . - - . . . . .
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k k I

n-k'k -k(1-k) 

k

> f d-- x."'!?
k(I-k-')X

after evaluating the integrel and applying the Mean Value Theorem. Hence

k ""
+ lo 1 i" - 'og k-'.c as k-.--c,

and consequently (2.17) is satisfied. (2.18) is also satisfied. Hence Theorem

2.3 (b) applies.

(c) Suppose a - 1. It is not apparent in this case how to construct the
{f} sequence which is necessary to apply Theorem 2.3 (b). However, we can

directly use (2.28)-(2.30) to get the desired estimate of P{k = i}. So, from

(2.28)
k-1

P{ kE{2,3,}) = PCI,k + " PDm,i (2.36)
rn-1

Now from (2.219)

PC-'1k C1  (

k-I-

<c expf- l --

1 n J

k0 (2.37)k6

Also, from (2.30)

%

%S
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k-i kIO -
F, PDM~k<-C2 k Mi-6H

k-i -

C c2 E -b expE%
rn-i m -+n

k-Ia k
C c2  b- exp fr~ dxj

rn-i m +

C2 k-i 1 ,
- E (

rn -i mb

2C2 k-i 11
b-6

since (p +q) < pr +qr: for p,q>O0, 0< r<1. Since 6<1 (use 01=1 in
(2.15)) andb >a =l1we have b6 >O0. Hence

k

13+C if (2.38

2C2 (1 + log k)if 6(.8

k--9

where C3, C4 are suitable constants. Combining (2.36)-(2.38) completes the

proof of part (c).0

2.2.2 Sample Path Analysis

We now analyze the sample path behavior of a Markov chain {Ick} with

state space E which satisfies (2.13) and/or (2.14). We shall give (different)
conditions such that

f { k} visits a subset of E (infinitely often) with probability one

* ~}visits a subset of YZ with probability less then one p

* ~)converges to (i.e. eventually stays in) a subset of )iwith
probability one
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It will be convenient to use the following notation. For J a subset of Y, define%
the events

00 V

{ kEJ i.o.i = fl U 1 keJI
n-i k>n

00 5

{kEJ a..} = n f {kEJ}"
n-I k>n

(i.o. and a.a. stand for infinitely often and almost always, respectively).

Our first theorem gives sufficient conditions under which {fk} visits a
subset of Y infinitely often with probability one.

Theorem 2.4 Assume that (2.13) holds. Let J be a subset of E and %-

a max min aJ < o . (2.39)
iE!\J jEJ

Suppose

00 -

Z oo. (2.40)
k-i

Then P{kEJ i.o.} = 1.

Proof Let I 1 :\J. Using (2.13) and the Markov property

P' f { CkEI} < P{ mnCI} I-H a {+ I }*
kn k-I 1-- rn max P{k+1 k = i}

n-i< min P{~k+lE1k

< 1- (1 -min) E n m.k-rn 

,E 

t k

Hence '"

P n- k Z} I -A O )=0 Vm

k-m k-m

where the divergence of the infinite product follows from the divergence of the
infinite sum (2.40), and the Theorem follows. C

....... .. ....
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V

The next theorem gives sufficient conditions that {Vk} visits a subset of L
with probability strictly less than one, at least starting from certain initial

states. Let Pi(-) = P{'[ 1 = i} for all iE.,

Theorem 2.5 Assume that (2.14) holds. Let J be a subset of" and 0

b=max min min3>0. (2.41)
KDJ iEE\K jEK ' (.)

Suppose that 0k- and

0 < CC(2.42)
k-i

Then there exists an iEZ such that

-iU {EkEJ} < I

Proof Let J* be a subset of E containing J which obtains the maximum in

(2.41) and let I' E\J . Let EIf Using (2.14) and the Markov property

P l {kEI} f rain P{k+iEI'k =}
k-i k- i EI'

= 1- max P{k+1EJ I(k- '
k-i iEI*

11I 1-max E B 0"
k-i iEl" jEJ •

n-1
- H (1 -BJ*[0k) Vn.

k-i

Hence

00

PP k { kI } -  1 > - BIJ&k b) > 0
k-I

where the convergence of the infinite product follows from the convergence of A

the infinite series (2.42), and the Theorem follows. 13

Finally, we give a theorem which gives conditions such that I k,-

converges to a subset of E with probability one, provided it visits that subset

infinitely often with probability one.

% P 0
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Theorem 2.6 Assume (2.14) holds. Let J be a subset of - and

c = min min 3(2.43)
JEJ iE!2\J (4

Suppose Ok--O and

k-i

Under these conditions, if P{ kEJ i.o.} = 1 then PikEJ a.a.} - 1.

Proof Let I = E\J. Using (2.14) and the Markov property

P{kEJ, Ck+,EI} < P{kEJ} max P{ k+1EIIk = Ji
J

<max E B OkJEJ iE!

Hence
00 00NG{ EJ, k,,ljI BRII Oc < .

k-1 k-I

by (2.44). Hence by the "first" Borel-Cantelli Lemma we must have

P{ kEJ, k+1EI i.o.} = 0, and it follows that P{kEJ a.a} = 1 whenever

P{ kEJ i.o.} 1 V.•

2.3 Convergence of the Annealing Algorithm

In this Section we apply the results of 2.2 to obtain asymptotic properties

of the annealing algorithm. Throughout this Section (2.3) we use the notation

introduced in 2.1.

2.3.1 Bounds on the Transition Probabilities of the Annealing Chain

In order to apply the results in 2.2 we need to obtain bounds on the d-

step transition probabilities pi(kk+d) of the annealing chain {k-. Toward this

end we make the following definitions. For every i,jEC and dG.T let Ad(i,j) be
the subset of Ed+ such that (i = io...1 .. d = j) E Ad(i,j) if

> 0 V n = - I

for any kEN (this definition is valid since {Tkj' is a positive sequence and so
Ap(k,k+,) > 0 for all k whenever pk,kl) > 0 for some k). llence ,j(ij) is just

%. -. .........- - .
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the set of possible d-step transitions from state i to state j for the annealing

chain. An alternate characterization of Ad(i,j) is as follows:

0 = i .... id = j) E Ad(i,j) iff for every n = O,...,d-1 either

(i) q1,°* > 0 or

(ii) i i, and q(in,Q) > 0 for some VCY with U(9) > U(in).

This characterization follows easily from (2.2).

For each dEI let

d-1
Ud(io ... ,id) = N maxoU(i 1 ) - U(i )} ,.I

n-O

for all io, ... id E E, and

Vd(i,j) = inf Ud(X) (2.45)
XEAd(ij)

V(ij) inf Vd(ij) (2.46)

d

for all i,jEE. Note that the infinum in (2.46) is obtained for d < JEf. Also

note that

V(ij) < V(i,) + V(Q,j) V i,j,QEZ • (2.47)

We shall call Vd(ij) the d-step transition energy from i to j, and V(ij) the

transition energy from i to j.

The following theorem gives upper and lower bounds on the d-step
transition probabilities of the annealing chain in terms of the d-step
transition energy. .

Theorem 2.7 Let {Tk} be monotone nonincreasing and dCT. Then there

exists positive numbers A, B such that

S Vd(iJ) _ (kk+d) Vd(i'J)
A exp <Pij'I B exp V i,jE i • (2..18)

Tk+d-I Tk-

Proof We prove the lower bound in (2.48); the upper bound is similar. Let

qj if j -

rk(ij) - (kk if j i (2.19)

for all i,jC:Y, and

p * . . . . . . . . .. :..,_..,-



34

d-1
'k(1 0 ,...,id) = 11 rk(i',i.i) 1(2.50)

U -0

for all i., ... ,jdCZ. If XE~Zd'' then since (TO} is nonincreasing {OX) is
nondecreasing and so F(X) = ij(X) obtains the infimum. Note that i(X) > o

for all XEAdOIAj) W~EE.

Now from (2.2) and (2.49)-(2.51) we have that

P (k~k+d) > i (X) exp T J V iJEE (2.52)

For each WjEE if Vd(i"j) < oc let

N(ij) ={XEAd(i"j) Ud(X) =Vd(i'j)} 0
and set

if Vd(ij) = c set a1ij 1. Then from (2.52)

(k~k d)_ Vd(1,j) 1
p.k~~d A exp Tkd.. V iWEE

where A =min a13 >0. 0
jEE~

Remark We note that the proof of Theorem 2.7 is quite trivial, and we
would like to point out that our reason for presenting it in detail is for

comparison with the (more difficult) proof of the general state analog

(Theorem 3.3) to come.

2.3.2 Convergence in Probability and Rate of Convergence for Two
Local Minima

We now apply the results of 2.2.1 to establish the convergence in

probability and rate of convergence for an annealing chain {VO with an

energy function U(') with two local minima. We shall consider the following

example in detail:

71

% %
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(H) = {1,2,3}

U(1) < U(3) < U(2)

q 1 2, q 2 1, q 2 3 , q3 2 > 0

qij = 0 otherwise.

The annealing chain corresponding to (H) is illustrated by the transition
diagram in Figure 2.1. Let -

a = U(2) - U(3) ,.

b = U(2) - U(1)

= U(3) - u(1),
Sq32"q21 l'

Here is our theorem. -U

Theorem 2.8 Assume the conditions in (H).

(a) Suppose Tk0 and

00f

exp -(2.53)
k-i "io

Then

liM P{ k= 1} 1
k--+oo

(b) Suppose (more strongly) that TklO and there exists a sequence {Ek}
with 0 < ek < 1 and Ek--l such that

k a1
Zexpj -- -* cc as k--oo, (2.54)ll~~ekT2k 6 T2k "-

sup < c . (2.55)k T 2k T ~ k ,Z

Then

P{~k= 1 =+O0 exp ask--x. (2.56)

Tk0

N

U d -UP*~* N
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U(3)

LL (tI)

Figure 2.1. Transition Diagram for Annealing Chain with Two Local
Minima

% % % %

% %~
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Proof Let -

7 k = 2k ' [k = 2k+1 '

k = -ex 7k exp -

Then {7k} , { k} are Markov chains with 1-step transition matrices
{R(k'k+1)} - {[rik'k+1)]} ,{S(j

' + )} - {[si k'k+1)]}, respectively, which satisfy
A aal _(k,k~l) -'i

Aijk < ri0  < BijK ' k

Aj ij < 5 .k,k +1) < Bij~ gi

for appropriate tij, Oij, Aij, Bij, and it is clear that these constants may be

chcqen such that ,.

a - max{ce 21 , e31} <cc, 0

b = min{312, 013} > a ,

SA 31

Henc, e are (almost) in a position to apply Theorem 2.3 to {} and {(k}- .

Suppose that TkIO and (2.53) holds. Since {Tk} is nonincreasing, the

divergence of the series in (2.53) implies that

Ok = 00, Zrk=o .
k-I k-i

Hence we may apply Theorem 2.3 (a) to {27}, {k} to get

lim P{2k = 1} = lim P{i1 =1} = 1,
k-*oo k--"

lim P{V2k+ 1 = 1} = lim P{'k- 1} =1,
k-.+oo k-.oo

and hence

lim P{ k = 1} = 1 .
k-*oc

which proves (a).

Suppose that TkIO and (2.54), (2.55) hold. Now (2.54), (2.55) are -

equivalent to, respectively,

-0-
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k
0,a + 1 log Ok - oo as k--o0, (2.57)

n-k"fk

0
sUp k-- < 0" (2.58)

Hence we may apply Theorem 2.3 (b) to {7} to get

P{ 2k-1}=P{?k=l}-=1+O exp ---- as k--oc. (2.59)T2k

We make the following

Claim
k
kE T + -log k 00 as k--oo, (2.60)

fkk

7S
k'fk

sup - <00 . (2.61)
k 7k

Suppose the Claim is true. Then we may apply Theorem 2.3 (b) to { k)
to get

P{2k+l = 1} = P{k= 1} = 1+-0 exp Ta as k-oo, (2.62)

and it would follow from (2.59) and (2.62) that

P{k - 1} + 0 exp-- as k---oc,

which would prove (b). It remains to prove the Claim.

Proof of Claim We first show that

s 1u T K . (2.63)k T2k+1 T2k,-

Now 9
1 _ 1 < 1 . 1 +1 1. ,

< kk
T 2 k+l T 2 k T 2 (k+l) T T T2k

2(k~l-tj 2(k-4-I)*(k

In view of (2.55) it is enough to show

S
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sup <0o, "0
T2(k+l)k T

or since {Tk} is nonincreasing,

2(k+l)'Ek _ 2k (k large)

Suppose this last inequality is not satisfied. Then there exists a sequence {k}-

of positive integers with k400 and

knek, > k. - Ek > k. - 1

Hence

kS
lim inf + log k

k--4co
n--kk

which contradicts (2.57). Hence (2.63) must be true. Now using (2.63) we
obtain

k k

sup E r <sup 0 Tkl < 00,

sup ( sp egp <
( kk o Tk+ T2k

pS

k rk - k k. T2k+l Yj<00

and (2.60), (2.61) now follow from (2.57), (2.58). This completes the proof of
the Claim and hence the Theorem. -

0

7,~
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Corollary 2.2 Assume the conditions in (H). Let
C

Tk - log k (k large)

where c is a positive constant.

(a) If c > a then

lim P{Ek = 1} = 1
k--oo

(b) If c > a then

P{k = 1 + 0 exp as k--,o. (2.64)

(c) If c =a then

1 [x if -Y <P{ k ---1) ---- l -O exp[ - '~ + log logk] if -Y= T

1 +O exp- if I> " as k--oc,

(2.65)
where --- 8/2.

Proof We may use Corollary 2.1 by appropriately identifying variables. Let

r/k E2k ' 5'k = 2k+1

and

1Ok -%l/

kl/c
Then ('7k}, ( k are Markov chains with one step transition matrices %

(R(k,k+1)} = {[r(k,k+1)]}, {Sk,k+U)) - {[s(k,k+ 1 )]}, respectively, which satisfy
A ij 0 k j < r.(kk+ l ),  (k,k+l) K B ij (

pi k <j Ai , (k large)

for appropriate cep , Aij, B1j, and these constants may be chosen such that

U %
% % .
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a = max{a 2 1 ,}< "<)0
b = min{)312,9i13} > a,

Hence we may apply Corollary 2.1 (a)-(c) to {7k}, { k} to get the

corresponding (a)-(c) here. 0

Remarks on Theorem 2.8 and Corollary 2.2

(1) Theorem 2.8 (a) is a simple case of Theorem 2.2 (Hajek's Theorem)

since a = A(2) = A*, the optimal constant (see (2.10)).

(2) We compare our results with the rate of convergence (2.9) given by

Mitra et. al. First, Theorem 2.8 (b) gives the rate of convergence of
P{ k = 1} to I for nonparametric temperature schedules, in particular

schedules not of the form Tk - c/log k. This Is possible essentially due to the

application of the Abel-Dini Theorem on infinite series in the proof of Lemma
2.1. (2.9) is valid only for temperature schedules of the form Tk = c/log k.

Second, Corollary 2.2 (b), (c) gives the rate of convergence for temperature
schedules of the form Tk = c/log k for c >_ a, whereas (2.9) only holds for

c > r L = 2"[U(2) - U(1)] > U(2) - U(3) = a. Furthermore, for c > r L where
(2.9) does hold, (2.64) is in general tighter:

exp k 1(1Tk --kV kmn #

Recall that Mitra et. al. suggest choosing c > r L such that min{oe"} is

maximized (see (2.9)). Our results suggest choosing

a ifc = + f />

where 0 < E < a (('i/r) - 1] (see (2.64) and (2.65)). We want to stress that

(2.9) holds for general U(-) whereas we have not been able to extend Theorem

2.8 and Corollary 2.2 to a U(') with more than two local minma.

(3) The proof of Theorem 2.8 and Corollary 2.2 (which rely on Theorem

2.3 and Corollary 2.1) show that there are two factors which limit the rate at
which P{ k = 1} converges to 1. One factor corresponds to the rate at which

the annealing chain makes transitions from state 1 to state 3 and back. For
temperature schedules of the form Tk = c/log k this factor dominates for

c > a and has a characteristic time scale 1/. Note that y = U(3)- U(1)

N5 N ~ % %555.5 4455

S... - % , % , -A~. ." . . ..- Z ' . " " ' .". .*-:~.'.- . L." .
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depends only on the energy function U(-). The other factor corresponds to the
rate at which the annealing chain makes it first transition from state 3 to
state 1. For temperature schedules of the form Tk = c/log k this factor is

only important for c = a and has characteristic time scale 1/5. Note that

= q.2q21/2 does not depend on the energy function U(). We wonder
whether there is some physical significance to all of this.

2.3.3 Sample Path Analysis

We now apply the results of 2.2.2 to analyze the sample path behavior of
the annealing chain {k}. To avoid trivialities we will need the following

assumptions:

(P1) Every iEE\S can reach some jES "

(P2) There exists an iEE\S such that for every jES, i can only reach j
at height greater than U(i).

The following theorem gives conditions under which the annealing chain

{ k} visits S infinitely often with probability one. Let

V* = max mn V(ij) (2.66)
iEE\S JES

Note that (P1) holds iff V* < co.

Theorem 2.9 Assume (P1). Let {Tk} be monotone nonincreasing and

00

E exp 00. (2.67)
k-1 T

Then P{ kES i.o.} = 1. 0

Proof We first show there exists a dENsuch that

V* = max Min Vd(i,j). (2.68)
iE!\S jES

For every iEE\S there exists a diEG such that -

min Vd(i,j) = min V(i,j) V . .4

jES jES

L --et d' max di. Now it is easy to see that for every iE"
iEE\S

min V,(i,j) < min V(ij) V n > m .
jES - jES .

Hence for every iCZ\S

,' .. . ' .i'-f.. '..e. . .. V. . '.'- ., . .. '..'. . . .-. .-, . * - - . - . . . .. - . - . .- . .-.-... .... . ." . - - .-. -. -
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Min Vd-(i,j) min min Va(i,j) V
jES n< d" jES

and (2.68) follows by setting d = d*.

Next, from Theorem 2.7 there exists a positive number A such that

(kkd)>Vd(W,)
pik 'k+d) _ A exp - Tk+dI V ijEE .

Let

kkd, Ok expI,
vk~eP 1 -Tkd+d--1

and "3

a()= Vd(i,j) V i,JE . (2.69)

Then {k} is a Markov chain with 1-step transition matrices
{f3(k~k+1)) [.kk1j

i' } which satisfy

p(k,k+i) > A Oc~ V WEEcZ

Let

a =max mmnci
iEE\S jES

By (2.68) and (2.69) a V*. Hence since {Tk} is nonincreasing the divergence
of the series in (2.67) implies

ov •

k-1

Hence we may apply Theorem 2.4 to { k} with J = S to get P{ZkES i.o.} = 1
and so P{kES i.o.} = 1. 0

Remark Clearly V* > A*, the optimal constant (see (2.10), (2.66)). Hence
(assuming strong irreducibility and weak reversibility) Theorem 2.2 is a much
stronger result. However, the importance of Theorem 2.9 is that it can be
extended to a general state version of the annealing algorithm under
essentially the condition that the state space be a compact metric space and
the energy function be continuous. This will be done in Chapter 3.

The next theorem gives conditions under which the annealing chain { k}
visits S with probability strictly less than one. Let

W V - , ,. .
% % %
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-,.$

V, - max min min V(ij) . (2.70) :.
KDS iEE\K jES

Note that (P2) and (2.47) imply V1 > 0.

Theorem 2.10 Assume (P2). Let Tk--O and

exp - 00. -

Then there exists an iEE such that

Pi U {kES} < 1
k-I

Proof From Theorem 2.7 there exists a positive number B such that

~(k~k+l) <V0i1j)1 iE .
piJk k l  B exp [--g, ]k V iWEE .-i, ,

Bexx4 Tk ,e

Theorem 2.5 may be applied to {k} in an obvious manner. 1"

Finally, we give a theorem which gives conditions such that the

annealing chain {k} converges to S with probability one, provided it visits S

infinitely often with probability one. Let

V2 = min min V(j,i) . (2.71)
IES iEE\S

Theorem 2.11 Let Tk--O and
0- _1 < -C)

kE exp 0k-I "Tk.'

If P{fkES i.o.} = 1 then P{ kES a.a.} = 1. ,

Proof From Theorem 2.7 there exits a positive number B such that

~(k~k+i)
pi < B expFV~~1 V i,jE

-- Tk .

Theorem 2.6 may be applied to {k} in an obvious manner. 0 "a"

Remark Theorem 2.2 or 2.9 may be combined with Theorem 2.11 to give

conditions under which the annealing chain {k} converges to S with '

probability one. Note, however, that is is not always possible to do this since

it is not in general true that V2 > V* or even V2 > A* (see (2.10), (2.66), ,q.

(2.71)). %P

..M ..." .. A -" * .5 -, A ", , -, ., ,. -- . -. . . - . . -. ". .- . -F. - -. '= -; - - """ - - - " -. - - - " .. " " "
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2.4 Annealing Algorithm with Noisy Energy Measurements A.

In this Section we consider a modification of the annealing algorithm so

as to allow for noisy measurements of the energy differences which are used in

selecting successive states. This is important when the energy differences

cannot be computed exactly or when it is simply too costly to do so. Using

the notation introduced in 2.1 we construct the modified annealing chain as

follows. At time k, given the current state is i we select a candidate state j

with probability qij. We assume that the energy difference U(j) - U(i) is

measured with (additive) noise, which is independent of states and candidate

states at times less than or equal to k, and noise at times less than k. The

exponent of the energy difference plus noise is then used to determine whether

a transition is made from i to j. More precisely, let {wk} be a sequence of R-

valued independent random variables. Construct a E-valued discrete-time

process { k} with k+l conditionally independent of 1,..., k-l and wl,...,wk_ ,

given k and Wk, and

P{ k+ J k=i, wk W}

qi exp U(j)--U(i) +w if U(j)-U(i)-+w >0, j #i, '

1qjj if U(j) - U(i) + w < O, j 2 i,

for all i,jWE. It is easy to see that k} is a Markov chain. Let

{P(k,k+l)} =_ {[pik,k+1)]} be the 1-step transition matrices for Vk}. Then since

wk is independent of k we have

)(kk + l) =E{P{#k+l - tk, Wk}I~k --i}

= E{P{ k+l = 1k = i, wk ..

--- f qij exp _ ~ )- ~)+w dFk(w)".-""

{w>U(i)-U(j)} Tk W]

+ qj P{Wk U(i) - U(j)} Vj s i , (2.72)

where Fk(") is the distribution function for wk. We shall call {. k} the

annealing chain mdified for noisy energy measurements. In the sequel we

% % %% .'....
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shall only consider the case where Wk is Gaussian with mean 0 and variance

o1 > 0. Hence (2.72) can be written as

tikjk+
l) U(i) f qij exp Uj j dN(0,,7k) (w)

UW- uO)T .

+ qj N(O,ok2) (-oc, U(i) - U(j)] V j x i. (2.73)

The following theorem shown that if the noise variance goes to zero fast

enough then the 1-step transition probabilities for the annealing chain

modified for (Gaussian additive) noisy measurements are asymptotically

equivalent to the 1-step transition probabilities for the unmodified annealing

chain.

Theorem 2.12 If

o t = o(T') as k--oc

then

1kk+l) ftqjj exp --. - if U(j) > U(i)

if U(j) _ U(i) , j si , (2.74)
1qjjl

as k-*o, for all i,jEE.

Proof Fix i,jEE with j 5 i and qij > 0. Let.0

ak -- f q j exp [- U(j)-U + w dN(0,,7k2) (w)UWi - UOj) Tk '

bk q=j N(O,ok) (-cc, U(i) - UCjll

so that (2.73) becomes

(kk+ a k + b (2.75)

Clearly,

lim ak 0 if U(j) < U(i), (2.76) .
k--oc

%~ % .

'% % % 1 % % % % ,• ,
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q if U(j) <IJ(i)
lrn bk = (2.77)

kooif u) u(1)

We make the following
.e

Claim

ak -%jexp [ ()~ ] if U(j) > U(i) and qk2 o(T') (2.78)

a- if U(j) - U(i) and c =- o(T') (2.79)
2 k

[ U()--U(i) ] if U(j) > U(i) and - =" o(Tk) (2.80)I -o e~ -- Tk '

&3 k---c.

Suppose the Claim is true. Then combining (2.75)-(2.80) gives (2.74) if

ak2 - o(T"), as required. It remains to prove the Claim.

Proof of Claim We have
r@

~~~U(j) -- UMi + W d(, ) ()
&k -- f qjj exp dNO-k) wU(i) -U) Tk

-fj exp U ew dN(O,o/T2) (w) (2.81)= j exp - Tk Tkp(i) - uOj]-

after a change of variable. Choose W < 0 and let

e-" if w>Wf~) e - w  if w <( W .

Then for sufficiently large k

00 f e- - dN(0, 2/T 1) (W)

TjU(i) - UU)-

00 Tk((i) - UO)-
f(w) dN(0,ok2/T )(w) - f f(w) dN(0, '/T')(w) (2.82)

-00 -00

We analyze these last two integrels as follows. First, if k = o(T ) then 0

%

0 °

"., , .,* 'e" , . . .,' •" , .. . o ," ." ... " ." ,, ... ,,, "_'•* ~' ., ,t , ' ,' .%-. " ,t%.%.%-.-'.-,,,.-. -,,,.o . ' ." -> .-.. '.-
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N(0,o'/T) (') converges weakly to the unit measure concentrated at the

origin, and since f(') is a bounded and continuous function on R

00

lim f f(w) dN(0,O /T) (w) = f(0) 1 (2.83) "k-- +oo -00O

Next, if U(j) > U(i) and o-k = o(T4) then

Tk[U(i) - UU)

f f(w) dN(0, k/T )(w)

e-W N(0,a /T])(-oc, Tk[U(i) - U(j)],

Se - W N(0,1) ((Tk2/ak) . [U(j) - U(i)], OC)

<eWex fU(j) _ U(i)12 1
2(cT2 /T4)k]

-0 as k -- oo , (2.84)

where we have used N(0,1) (x,oo) exp(-x /2) for x > 0. Combining (2.81)-
(2.84) gives (2.78). (2.79) may be proved similarly by taking W = 0 above.

As for (2.80), if U(j) > U(i) and ck = o(Tk) then

bk N(0,o-) (-c, U(i) - U(j)j

- N(0,1) ((1/0k) " [V(j) - U(i)],cc)

exp -[U (j) _ U (i)2

u(j) - uOi) -
o exp - T ) as k-*oc,

again using N(0,1) (x,cc) :_ exp(- x /2) for x > 0. This completes the proof
of the Claim and hence the Theorem. 0

The asymptotic behavior of the annealing chain modified for (Gaussian
additive) noisy measurements follows immediately:

e

%

.A.Oo .
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Corollary 2.3 If

ai o(Tk) as k--co

then Theorems 2.1, 2.2, 2.7-2.11 hold with {Vk by {Wk}

Remarks

(1) The Corollary is more or less obvious, since the convergence in (2.74)
is uniform for ijEE (since EI is finite); we leave the details to the reader.

(2) We have reason to believe tha q; o(Tk) is quite conservative and

that ai o(Tk) may suffice.
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CHAPTER Ifl
GENERAL STATE ANNEALING TYPE ALGORITHMS

3.1 Introduction to the General State Annealing Algorithm

In Chapter 2 we discussed the annealing algorithm as introduced by
Kirkpatrick [191 and Cerny [31 for combinatorial optimization. In this Section .
we extend the annealing algorithm for optimization on general spaces. The

general state annealing algorithm will consist of simulating a nonstationary
Markov chain whose state space is the domain of the cost function (called
energy) to be minimized. This Markov chain will be a general state space

analog of the finite state annealing chain described in Chapter 2. As far as

we know, no one has given a careful formulation of such an algorithm and
proved a convergence result. Indeed, there even seems to be some question
regarding conditions under which the Metropolis algorithm, i.e., the annealing

algorithm at a fixed temperature, may be used for sampling from a continuous
Gibbs distribution (c.f. [16]). Geman and independently Grenander [13] have

suggested using diffusions for optimization on multi-dimensional Euclidean
space. This approach and its relationship to the general state annealing
algorithm is described in Chapter 4.

We first give some standard general state space Markov chain notation
(c.f. [6], [27]). Let E be an arbitrary set and let B be o-field of subsets of E.
P(.,-) is a stochastic transition function on (Z,B) if

" for every AEB P(',A) is B-measurable

" for every xEE P(x,') is a probability measure on (E,B).

{Pk(',)} are the 1-step transition functions for a Markov chain { k} with
state space E if for every kEN Pk(,') is a stochastic transition function on

(E,B) and

P{ k+,EAkk} = Pk( k,A) w.p. 1 (3.1)

for all AEB. Conversely given a sequence {Pk(',')} of stochastic transition
functions on (Y,B) we can construct on a suitable probability space (n,F,P) a
Markov chain {} with state space E which satisfies (3.1). For each dET let

.5r

,i ,' ', *# ,' . ', ,' ' '.'- , , - - /. ° .- . ." ' ,e ,,. . .,. .  '.. % -° .- , . . - . .• •. . . -.. •0
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p(kk+d)(XA) f Pk(x,dxl) ... f Pk+d_2(Xd_2,dXd-1) Pk+dl(xd_1,A) ke

for all xEE and AEB. p(k,k+d)(.,.) is a stochastic transition function on (E,B)
and

P{ k+dEAkk} = p(k'k+d)( kA) w.p. I ..

for all AEB. It will be convenient to have a fixed version of the conditional
probability of k+d given k which we define by

P{k+dEAAl k X) p(kk+d)(x,A)

for all xEE and AEB.

It is characteristic of the theory of Markov chains with general state
space that there exists an auxiliary o-finite measure usually denoted by ¢(),
i.e., the state space is a a-finite measure space (E,B,O). We shall adopt this
framework. We now define the general state annealing algorithm. Let U() -
be a nonnegative B-measurable function on IE, which we shall call the energy 0

function. The goal is to find a point in E which minimizes or nearly '-'

minimizes U(-). Let {Tk} be a sequence of positive numbers, which we shall
call the temperature schedule. Let q(.,-) be a nonnegative BxB-measurable

function on ExE such that

f q(x,y) k(dy)= 1 V xE.-

Now let { k} be the Markov chain with state space E and 1-step transition
functions {Pk(',-)} given by

Pk(x,A) f q(x,y) Sk(X,y) 0(dy) + "yk(x) 6(x,A) (3.2)

for all xEE and AEB, where

u(Y) -u(x) :yxp -if U(y) > U(x) 0
Sk(xy) = J

if U(y) < U(x)

k(x)-1 - f q(x,y) Sk(X,y) 0(dy)

and 6(x,') is the unit measure concentrated at x, for all x,yGZ (note that

• • . *.*4.-*.*.*.*.*.% %.'. *. .'. . , . . - -.. . . ..- ,•.... . " ".. - - , - -. *. - .° ., °-
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lop

Fubini's Theorem guarantees that Pk(',') defined by (3.2) is a valid stochastic

transition function). We shall denote by Pk(X,') the density of th- 4 -

absolutely continuous component of Pk(x,') and by p k-d)(x,.) the density of

the €-absolutely continuous component of P(k'k-d)(x,'). Note that if E is finite

and €(') is counting measure then {k} is just the finite state annealing chain

of Chapter 2 with j = q(i,j) (see (2.1)). Hence we sha!l also call {k} the

annealing chain, and the algorithm which simulates the sample paths of { k}

with Tk--O the annealing algorithm.

The motivation behind the general state annealing algorithm is similar to

the finite state case as described in Chapter 2. Let

Q(x,A) = f q(x,y) 6c(dy)
A

for all xEi and AEB. Q(',') is a stochastic transition function on (E,B). For

each dEI let

Q(d)(x,A) = f Q(x,dxl) ... f Q(xd_,dxdl) Q(xd_1,A)

for all xGE and AEB. The following definitions generalize the familiar finite

state definitions. We shall say that Q(',') is irreducible if for every xGEj and

AEB with '(A) > 0 there exists dEN such that Q(d)(x,A) > 0. We shall say

that Q(-,') is symmetric if q(xy)= q(y,x) for all x,yCE. Suppose Q(',-) is ,

irreducible and symmetric, and let { T} be the stationary chain with 1-step

(stationary) transition function pW(,) given by the r.h.s. of (3.2) with

Tk = T, a positive constant. Suppose that 0 < O(F)< oc. Then it can be

shown that pT(.,.) has an invariant Gibbs measure HiT(.), i.e.,

HT(A) f rT(dx) pT(x,A) V AEB,

where

f exp[- U(x)/T](dx)

rHT(A) V AEB.
f exp[- U(y)/T]'(dy)

This follows from the detailed reversibility

7rT(x)pT(xy) = T(y)pT(y,x) , S

valid for x&-a.e. x, yE, where 7rT(') and pT(x,') are the densities of the &-

absolutely continuous components of f-T( • ) and pT(x,'), respectively.

Furthermore, Q(',') irreducible and symmetric implies that {,T} is an

irreduciblet (and aperiodic) chain and if a certain condition of Doeblin [6, p.

tA stationary chain is irreducible if its 1-step (stationary) transition function is
irreducible.

%S
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192] is satisfied, then by a version of the Markov Convergence Theorem [6, p.
199]

lir P{T EA} - r IT(A) V AEB. (3.3) Oro
k .oo

Let S be the set of global minima of U(-), i.e.,

S = xE: U(x) _< U(y) V YEE)

(assume S 0 0 for the moment). Now for small T we expect lT(.) to be
concentrated near S. Like the finite state case, the idea behind the general
state annealing algorithm is that by choosing T = Tk--O slowly enough the
probability measure of k actually becomes concentrated near S.

Unlike the finite state case there are some technical problems in just
verifying (3.3). We need to check Doeblin's condition and we also need a
practical criterion to check whether Q(',') is irreducible. These issues are
investigated in 3.2. We will not use (3.3) in our analysis of the annealing
algorithm with time-dependent temperature schedule. However (3.3) is of
independent interest as it constitutes the theoretical justification of a
continuous state version of the Metropolis algorithm which may be used for
sampling from a continuous Gibbs distribution (c.f. [16]).

In 3.3, 3.4 we shall extend our result (Theorem 2.9) on the finite state
annealing chain visiting S with probability one to the general state case, K-
under essentially the condition that the state space E be a compact metric
space and the energy function U(') be continuous.

3.2. Ergodicity of the General State Annealing Chain at a Fixed 0

Temperature

In this Section we shall discuss the ergodicity of the general state
annealing chain at a fixed temperature. We shall use the notation of 3.1
except that we will fix a temperature schedule Tk = T, a positive constant,
and suppress the dependence of the various quantities on T and also on the
time index k whenever possible. In this notation we shall give conditions
under which

lim P{ k A} = 11(A) V AEB . (3.4)
k-*oo

We have already remarked in 3.1 that (3.4) will hold if Q(',') is irreducible
and symmetric and a certain condition due to Doeblin is satisfied. Doeblin's
condition will be satisfied if

0

,.

" " , -'," " n "u" '.-' ',.° ". .
.  ' "  " " - " 
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(D) 0 < O(E) < oo and there exists e > 0 such that P(x,A) < 1 - c
for all xEE and AEB with O(A) < e.

Under suitable conditions on , ( U(-), and q(-,-) we shall verify (D) and
give a convenient characterization of the irreducibility of Q(-,'). These same
conditions will be used in 3.4 to analyze the general state annealing chain
with time-dependent temperature schedule. We shall also give an example of
a class of q(',-) which satisfy the stated conditions.

Consider the following set of conditions:

(Al) (E,p) is a compact metric space

(A2) (Z,B,) is a nontrivial finite measure space with B the Borel

subsets of E

(A3) 0(') is positive on open subsets of E

(A4) U(-) is continuous

(A5) q(,)is bounded -

(A6) q(') is continuous on {(x,y)EE×E : q(x,y) > 0}
(A7) €({})is lower semicontinuous on {xEE : q(x,x) > 0}

We remark that not all of these conditions will be used to obtain every
result.

The following proposition deals with Condition (D).

Proposition 3.1 Assume that (Al), (A2), (A4), (A5) hold. Then there exists
E> 0 such that P(x,A) _ 1 - E for all xEE and AEB with O(A) < E.

Proof Using (3.2) and (A5) there exists a constant c, such that

P(x,A) < c O(A) + "y(x) V xE, V AEB. (3.4)

Now

,-- -f q(x,y) s(x,y) O(dy)
My 1 -f) "'4|

S1-f q(x,y) exp y U(dy)

S1 -~C2 f q(x,y) O(dy)

=1C 2  V xEEZ, (3.5)

%....
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for some constant c2 > 0, since (Al) and (A4) imply that U() is bounded.

The Proposition now follows from (3.4) and (3.5). 0

We next develop a criterion for the irreducibility of Q(',') motivated by
the finite state case. We shall say that given states x and y, x can reach y if

there exists a sequence of states x = x0 , ... , xp = y such that q(xn, X1+1) > 0
for all n = 0,...,p-1. Suppose that E is finite, 0(-) is counting measure, and
q=j = q(ij). Then this definition reduces to that given in Chapter 2. Now the
stochastic transition matrix Q = [qij] is irreducible iff i can reach j for all ..

i .j . The following Theorem gives a similar criterion for the stochastic JA
transition function Q(x,A) f q(xy) 0(dy).

AV

Theorem 3.1 Assume that (A1)-(A3), (A6) hold. Then Q(,') is irreducible

iff x can reach y for all xEE and 0-a.e. yE. .

Proof Suppose that Q(',') is irreducible and there exists xEE and AEB with
O(A) > 0 such that x cannot reach y for all yEA. Then there exists a dE,_
such that Q(d)(x,A) > 0, and by Fubini's Theorem

Q(d)(x,A) = f Q(x,dxl) f Q(Xd 2 ,dxd_) Q(xd_1,A) %

f f q(x,x,) 0(dx,)... f q(xd_,x ) dXd) f q 0(dXd)
A

- f q(x,xl) . q(xd- 1,xd) Od(dxl"...dxd)

>0. (3.6)

Hence, q(x,xl),...,q(Xd 1 ,Xd) > 0 for some Xl,...,Xd-lEE and xdEA, and so x can

reach some yEA, a contradiction.

Conversely, suppose that x can reach y for all xEE and (-a.e. yEE• We
first show that given E > 0 there exists a compact CCE with €(C) > (E) - .
such that x can reach y for all xEE and yEC. Let BEB such that .

O(B) = O(E) and x can reach y for all xEE and yEB. Recall that a Borel
measure p is regular if given 5 > 0 and a Borel set F there exists a compact
set K and an open set G such that KCFCG and p(G) - p(K) < 6. It is .5.-

known that finite Borel measures on compact metric spaces are regular (c.f. .

[28, Ch. 14] for a discussion of these matters). Hence by (Al), (A2) () is a
regular Borel measure and so there exists a compact CCB such that :,e

O(C) > O(B)- E > (E) -E and necessarily x can reach y for all xE " and .

yEC.

• , ° . • - •.- /..' -*. . . .......". . .. ..... .... . .
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We next show that there exists a dEl' such that x can reach y in not

greater than d, steps for all xEE and yEC. By (A6) if x can reach y in d(x,y) ,,

steps then there exists neighborhoods U. of x and V. of y such that u can

reach v in d(x,y) steps for all uEUJ and vEVv. Now {ux(VvlC) : xEE, yEC}
is an open cover of compact ExC (in the relative topology) and so there exists

xl,...,XN E E and Yl,...,YN E C such that

N
ExC C U UXDXVy.

n-I

Let

d --max d(x,,y,).

Now fix xEE and AEB such that O(A) > 0. Ultimately we want to show

that there exists dEIR such that Q(d)(x,A) > 0. If O(A) = O(E) then

Q(d)(x,A) = 1 for all dEM So assume that 0 < O(A) < O(E). The next step is
to show that there exists d2EN and DEB with DCA and O(D) > 0 such that x

can reach y in d2 steps for all yED. Choose 0 < e < (E) - O(A) in the

definition of C above. Then O(CnA) > O(E) - O(A) - e > 0 and x can reach

y in not greater than d, steps for all yECfnA. For n = 1,...,dl let

C. = {yECf)A : x can reach y in n-steps}

Then CnCB for n - 1,...,dl and

U IC cnA.
n-I

Hence since 4(Cf"A) > 0 we may choose d2G{1,...,d,} such that O(Cd) > 0.

Let D = Cd2 ,

Let d= d2. By one additional application of Fubini's Theorem to (3.6)

Q(d)(x,A) Q(d)(x,D) f f(y) 4(dy) (3.7)

D

where

f(y) - f q(x,xl) ..... q(Xd- 1,y) d-1('X ... dXd-1 )

Since f(') is a B-measurable function on E and O(D) > 0, if we can show that

f(') is positive on D then by (3.7) Q(d)(x,A) > 0 and we are done. We now

show that f(-) is indeed positive on D. Fix yED and let

.

"S
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(Xil,...,Xd-1) q(x,xl) q(Xd_ 1,y) V Xl,...,Xd-,E-

Then

f(y) = f 4(Xl,...,Xd-1) 4 d-(d- " dXd_ 1 )

Since x can reach y in d steps there exists XI,...,XdIEE such that
4(X1,...,Xd1) > 0. Using (A6) there exists neighborhoods B. of x.,

n - 1,...,d-1, such that 4(') is positive on Bix ... xBd_.l Since 4(') is a B d - l -

measurable function on - i+ 1  and 0d-1(B 1 x "" xBd_1)

O €(B1) ..... (Bdl) > 0 by (A3), we have that f(y) > 0, and since yED was
chosen arbitrarily, we have f(-) is positive on D as required. 0 .

We end this Section by giving an example of a class of q(',-) which have

the property that the corresponding annealing chain makes "small" moves in
a topological sense. This is consistent with the approach taken in the finite
state case as discussed in Chapter 1. Of course if E is a metric space than S

the notion of smallness is well-defined. We construct a function q(',.) as
follows. Assume that (A1)-(A3) hold, and let p(',') and R(') be positive
continuous functions on ExE and E, respectively. Let

q(x,y) = c(x) p(x,y) XB(,R(X))(y) V x,yEE, (3.8)

where

c (x) f P~x,Y) 0(dy) V xEEi.
B(x,R(x))

Note that if

f p(x,y) 0(dy)= 1 V xEE I

and is a random variable which density p(x,*) with respect to 0('), then
q(x,') is a density for the conditional distribution of given EB(x,R(x)). The

following proposition establishes that q(') satisfies (A5), (A6).

Proposition 3.2 Suppose that

({YE p(xy) - R(x)}) - 0 V xEE. (3.9)

Then q(')is bounded and continuous on {(x,y)E xE• q(x,y) > 0}.
%-%
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Proof Let

f(x,y) = p(x,y) XB(.,R(x))(Y) V x,yEE ,

so that .,

q(x,y) - c(x) f(x,y) V x,yEZ ,

and
( aO'

c(x) f f(xy) 0(dy) V xZ..

Using the continuity of p(',') R('), and p(',') we have that f(,') is a continuous
function on {(x,y)Ex : p(x,y) o R(x)} and hence on
{(x,y)E Ex : q(x,y) > 0}. We now show that c() is a continuous function on
E. Let xEE and {x.} be a sequence in E such that x.-x. Then
f(x.,y)-f(x,y) for all yEE such that p(x,y) 3 R(x). Hence by (3.9)
f(x,,y)-.f(x,y) for 4-a.e. yEs, and by the Dominated Convergence Theorem
c(xn)---c(x). Since x and {x.} were arbitrary, c() is continuous. The
Proposition follows. 0 '.

Remark If E is a subset of If, 4') is Lebesgue measure and
p(x,y) = y - x then (3.9) is of course satisfied. -"-"

3.3 Asymptotic Analysis of a Class of Nonstationary Markov Chains -

In this Section we analyze certain asymptotic propertiEs of a class of
nonstationary Markov chains. These chains have the property that their 1-
step transition probabilities satisfy bounds similar to those satisfied by the d-
step transition probabilities of the annealing chain. The results of this
Section will be used in 3.4 to deduce corresponding asymptotic properties of
the annealing chain. ..

We shall consider the following class of Markov chains. Let (Z,p) be a
compact metric space and (E,B,O) a finite measure space with B the Borel
subsets of E and 0(') positive on the open subsets of E. Let c(',) be a [0,oo]- -

valued upper semicontinuous function on ExE and {k} a sequence of real

numbers with 0 < Gk 1. Let {(k} be a Markov chain with state space E
and 1-step transition functions {Pk(',')} whose 0-absolutely continuous .4.,.

components have densities {Pk(',)} with the following property: for every
u,vEE there exists a neighborhood Bu,, of (u,v) in Exi and a positive number

K(u,v) such that

%
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Pk(X,y) K(u,v) 9k(uv) V (xy)Bu,v. (3.10)

Note that we do not assume there exist a positive number A such that A
4PPk(x,y) A Ok(y) V x,yE, (3.11)

which is similar to (2.13). Of course if E is finite and 0(') is counting
measure, then we do obtain (3.11).

The following theorem gives sufficient conditions under which { k} visits %

an open subset of E infinitely often with probability one. rl.
I%

Theorem 3.2 Let Y be an open subset of E and %

a = sup inf a(xy) <00.
XEE\Y yEY

Suppose there exists E > 0 such that
00

E = o. (3.12)
k-I

Then P{ kY i.o.} = 1.

Remark If E is finite and 0(-) is counting measure we obtain Theorem 2.4
modulo the factor of e in (3.12) as compared with (2.40). However Theorem-.
3.2 cannot be proved by the simple argument used to prove Theorem 2.4,
essentially because we assume only (3.10) and not (3.11).

We will need the following two lemmas for the proof of Theorem 3.2.

Lemma 3.1 Let c > 0. Then there exists a nonnegative lower
semicontinuous function L(',') on x> with L(x,y) > 0 whenever a(x,y) < c
and

Pk(X,y) > L(x,y) Oc V x,yEE.

Proof Let U - {(u,v)E x: c(u,v) < c} which is an open subset of xE
since a(',') is upper semicontinuous on ZxE. Now by (3.10)

Pk(X,y) _ K(u,v) O1 , V(x,y)EBu,v, V(u,v)EU
Let

KI(x,y) = sup K(u,v) V (x,y)EU.(u,v)EU :
Bu.,(x,y)

It follows that K.

%0% % %% %0
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Pk(X,y) KI(x,y) 0' V (x,y)CU , (3.13)

and

inf Kl(u,v) _> K(x,y) > 0 V (x,y)EU. (3.14)
(uv)EB ,

Let K2(',") be the lower envelope of K(',"), i.e., 4-

K 2(x,y) = sup inf K1 (u,v) V x,yEJ.
6>0 0<p(u,x)+p(v,y)<,

Then (c.f. [1]) K2(',") is a lower semicontinuous function on U and
K2(x,y) _ Kl(x,y) for all (x,y)EU. Also (3.14) implies that K 2(',") is positive.

Let

K 2(xly) if (x,y)EU
L(x,y) 0 if (xy)OU,

for all x,yEE. Since U is open and K2(',") is a positive lower semicontinuous '

function on U, L(',') is a lower sernicontinuous function on ExE which is
positive on U. Furthermore

Kl(x,y) _ K 2(x,y) -- L(x,y) V (x,y)EU. (3.15)

The Lemma now follows from (3.13) and (3.15). 0

Lemma 3.2 Let Y be an open subset of E and

a = sup inf a(x,y)
xEE yEY

Let e > 0 and L(',') be a lower semicontinuous function on ExE such that
L(x,y) > 0 whenever a(x,y)< a + E. Then there exists open sets W1,...,WM
contained in Y such that

min sup a(x,y) a + ,
EE m-1,...,M YEWm

inf max inf L(x,y) > 0.
x z\Y m-1,...,M YEWm

Proof Let X = E\Y. We first show there exists a relatively open cover
Ul,...,UN of X and open sets V1,...,VN contained in Y such that a(xy) < a + c

for all xEUn, yEVn, and n = 1,...,N. For every xCX there exists a yEY such
that ca(x,y) < a + f, and since a(-,-) is upper semicontinuous there exists

neighborhoods A. of x and B. of y such that a(u,v) < a + e for all uGA, and
vEB.. Since {A,,nX : x X} is an open cover of compact X (in the relative

topology), there exists XI, ... ,XNGX such that

e-.

S%
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XC U A. A,

Let U -- A,,.nX and V.= B- nY for n

S.
We next show there exists a 5 > 0 such that for every xSX there exists a

yEY and an nE{1,...,N} such that xEjUn, yV., and L(x,y) > 5. Let
f.(x) =- sup L(x,y) V' xEX, Vi n=1,.N.-

and

f(x)= max f (x) V xGX.

Since L(-,-) is lower semicontinuous, {fi(),...,fN()} are lower semicontinuous

functions on X, and since {U1,...,UN} are open in X, f() is a lower
semicontinuous function on X. Now L(x,y) > 0 whenever a(x,y) < a + E and
in particular when xCU. and yjEV for some n = 1,...,N. It follows that f(-) is
positive. Hence since f(-) is a positive lower semicontinuous function on
compact X we can chocue

0 < 5 < inf f(x).
XEX

Combining the above results, for every xGX there exists a yCY such that
a(x,y) < a + c and L(x,y) > 5. We can now find similarly to the construction
of UI,...,UN and VI,...,VN above a cover U1,...,UM of X and open VI,...,VM

contained in Y such that c(x,y) < a + f and L(x,y) > 5 for all xEI~m, YE' Tm,
and m = 1,...,M. Let WM Vm for m - 1,...,M to complete the proof of the
Lemma. 0

Proof of Theorem 3.2 Let X -Y\Y. From Lemmas 3.1 and 3.2 there
exists a 5 > 0 and open sets W!,...,WM contained in Y such that for every 0
xCX there exists an mE{1,...,M} such that

Pk(xY) Ok'' V YEWm (3.16)

Using (3.16) and the Markov property

%" %
p .
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%J*

n-

k- M- k-m%

.'.

1%in PEkIlElk = XI%
-- k - m XE X ,

n_-iA-r 0-rn VE n >m

k-m

where A = "min (W.) > 0 (since €()is assumed positive on open".m-1 1... ,M

000

where the divergence of the infinite product follows from the divergence of the

infinite sum (3.12), and the Theorem follows. 0 $:

3.4 Convergence of the General State Annealing Algorithm-''
In the Section we apply the results of 3.3 to obtain certain asymptotic

properties of the general state annealing algorithm. Throughout this Section e

(3.4) we shall use the notation introduced in 3.1. We shall also refer to

conditions (A1)-(A7) given in 3.2.

3.4.1 Bounds on Transition Probabilities for the General State

Annealing Chain

In order to apply the results of 3.3 we need to obtain a bound on the d-
step transition density p(kk+d)(.,.) of the 0-absolutely continuous component
of the d-step transition function p(k~k+d)(.,.) of the annealing chain {Sk}.

Toward this end we make the following definitions. For every x,yEE and dEN
let Ad(x,y) be the subset of Ed+' such that (x = XO,...,Xd = y)EAd(Xy) if for

every n = 0,...,d-1 one of the following is true: ..

(i) x,,+ 1 5 x. and q(x.,x,+i) > 0

(ii) x+, = x. and q(x,,x,+ 1 ) > 0, (({x,}) > 0

I-%

N " V =
% . . ... . . .-. .., , % % " % ? .% % ."% ,
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(Mi) x.+, = x. and q(x.,z) > 0 for some zEE with U(z) > U(x.).

The following proposition gives an alternative characterization of Ad(',)-

Proposition 3.3 Assume (A1-(A6). Let x,YEE and dEIR Then

(X - XO .. X 4-Y)EAd(x,Y) iff there exists a version Of Pk("') such that

max {Pk(XnwXn+1), Pk(Xn,{Xn+l})} > 0 V n =0,.d-

Proof By the Radon-Nikodym Theorem and (3.2)

Pk(x,A) f Pk(X,Y) 0(dY) + Pk(x,A)
A

=f q(x,y) sk(x,y) 0(dy) + -yk(x) 8(x,A) 1

A

for all xEE and AEB, where 0(ke) and Pk(x,i) are mutually singular. Hence

Pk(X,y) = q(x,y) Sk(X,y) + 'yk(x)X((y

for all XEE and 10-a.e. YEE3, and

Pk(X,{y}) = q(x,y) Sk(X,y) 0({Y}) 4- 'yk(X) X{1}(y) (3.17)

for all x,yEE. Fix the following version Of Pk(,'):

q(x,y) Sk(x,y) if y 54 x ,

P-k(x,y) =q(x,x) + ^k({}) if y = x, 0k({X}) > 0 (3.18)

0 if y=x, 0 )

for all x,yEE. Now under (A1)-(A6) for every xEE ik(x) > 0 iff q(x,z) > 0 for
some zEE with U(z) > U(x). It follows from (3.17), (3.18) and this last remark
that (i)-(ii) hold iff Pk(xu,xfl+l) > 0 or Pk(X.,{X.+I}) > 0 for all n =0..d1

0

Suppose E is finite, 0(-) is counting measure and =j q(ij). In view of
Proposition 3.3 the above definition of Ad(%-) reduces to that given in Chapter

2.

For each dE~ let
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d-1.

Ud(Xo, ... Xd) E MaX{0, U(X.+ 1) -U(XX)
Ui-0

for all X01...,XdEE, and

Vd(X,y) .{XEAd~x,y) UdXPf.% (.9

00 if Y X,

V(Xly) =inf Vd(Xly),
d

for all x,YEE. We shall call Vd(x,y) the d-step transition energy from x to y,
and V(x,y) the tran-sition energy from x to y. We should like to point out a
difference in the definition Of Vd(,) here and in Chapter 2 (compare (3.19)

and (2.45)). Here we set Vd(x,x) = 0; see the remark following Proposition
3.4 for an explanation.

We first prove that the d-step transition energy (and hence the transition
energy itself) is an upper semicontinuous function.

Proposition 3.4 Assume (A1)-(A6). Then Vd(-,) is an upper
semicontinuous function from ExE3 into [0,00). -

Proof Let x,yEE such that Vd(x,y) <00o, and let e > 0. From (3.19) we
have that y 4 x and there exists XEAd(X,y) such that Ud(X) < Vd(X,y) + E/2.

It is clear that X can be chosen such that all of the self-transitions in X occur
consecutively. We consider here the following case (the other cases are
similar):

X=(x =X 0 = X-i 9& Xm # 6 Xdj Y)

where 1 < m < d . Now q(x,x) > 0 or q(x,z) > 0 for some zCZ with
U(z) > U(x), and q(x.,x.+1 ) > 0 for all n = m-l,...,d-1. Hence by (AM), (AM)0
we can choose neighborhoods B. of x and Bof y with B~flBy 0 such that
for every uEB. and vEBY we have q(u,u) > 0 or q(u,z) > 0, q(u,xm) > 0,
q(xd 1l,v) > 0, and

IU(u) -UM)I± 2 v (Y

Now let (u,v)EBxB~ and
N.,

% . . . .. .-.

li- s- J - - - .. -- . - . I -, - . .',
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o=(u, ... , UXm,...,Xd-1,V)

m times

Then OrEAd(u,v) and

[Ud(Or) - Ud(X)I < PM(u) - U(x)I + Mv) - U(y)I <

and so

Vd(u,v) < Ud(o) < Ud(P) + - < Vd(x,y) + f
2

and consequently Vd(',") is upper semicontinuous at (x,y). Since x,y were 0

arbitrary points in E which satisfy Vd(x,y) < oo, Vd(',") is upper

semicontinuous. 0

Remark Let

Vd(x,y) - inf Ud(X) V x,yEZ
XEA(x,y)

so that Vd(x,y) = Vd(x,y) for y 3 x but Vd(X,X) $ Vd(X,X) in general. It is easy

to construct examples such that V d(xy) is not upper semicontinuous at y = x.

We defined Vd(x,x) = cc to avoid this problem.

The following theorem gives a lower bound on the d-step transition

probabilities of the annealing chain in terms of the d-step transition energy.

Theorem 3.3 Assume (A1)-(A7). Let {Tk} be monotone nonincreasing and

dER Then there exists a version of p(kk+d)(.,.) with the following property:
given E > 0 for every u,vEE there exists a neighborhood BU, V of (u,v) in E×I<

and a positive number K(u,v) such that

p(kk+d)(x,y) K(u,v) exp -- V (x,y)EBu. (3.20)

Tk+d-1

Remark We do not assert (nor do we believe it is true in general) that

there exists a positive number A such that
p(k,k+d)(x Y) > Ax [ Vd(XtY) + f

P- -Aexp Vx,yEE , (3.21)

Tk+d-I

which is similar to the lower bound in (2.48) for the finite state case. Of

course if E is finite and 0(-) is counting measure than we do obtain (3.21).

".

'.
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We will need the following lemma for the proof of Theorem 3.3.

Lemma 3.3 Assume (AI)-(A7). Then Pk(',{}) is a continuous function On

Proof From (3.2)

Pk(x,{x}) q(x,x) 0({x}) + -yk(x)

1-f q(x,y) Sk(X~y) 0(dy)
yox

=q(x,x) 0({x)) + f q(x,y) [1 - Sk(X,Y)I q(dy) , (3.22)

for all xGEiI- Let xEE and (x.) be a sequence in E with x.--+x. Now from the

second equality in (3.22)

urn SUP Pk(X.,{X.D) 1 - M f q(x.,y) Sk(Xfl,Y) 0(dy)-

q(x,y)>O

= 1 -f q(x,y) sk(X,y) q(dy)

q(x,y)>O

Pk(x,{.x}) ,(3.23)

where we have used (A1)-(A6) and the Dominated Convergence Theorem to
evaluate the limit. Also, from the third equality in (3.22)

lim inf Pk(Xfl,{x~}) : lim inf q(x,,,x.) 0({x))

+ lrn f q(x.,y) [1 -Sk(X.,Y)l k(dy)

Zxx 4({} +li q(x,y)[ kxlO) (y

q(x,x) 0N{x)) + fi f~~y [1 - sky x [1 SkXI (dy)
q qxxyJ>O 5

=Pk(X,{X) (3.24)

where we have used (AM), (A7) to obtain the second inequality and (A1)-(A6) 5

and the Domnated Convergence T 'eorem to evaluate the limit. Combining

(3.23) and (3.24) gives
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lim Pk(Xn,{x,}) = Pk(X,(x)
n-*O0

and since x, {x.} were arbitrary the Lemma follows. 0

Proof of Theorem 3.3

Let

rkxy P(x) y:,(.5qx,y) if yox,rk'x?-" = Pk(X,{X}) if y = X, (3.,S

for all x,yEE, and
d-1

rk(XO,...,Xd) fi rk+n(Xn,X+l) , (3.26)
n-0

r(xO,...,Xd) = inf ik(Xo,...,Xd) , (3.27)
k

for all xo,...,XdEE. If XE d+ 1 then since {Tk} is nonincreasing {rk(X)} is 0
nondecreasing and so i(X) = il(X) obtains the infimum. Note that F(X) > 0
for all XEAd(x,y), x,yEE.

For every xEE define a measure I(x,') on (E,B) by

(x,A) = O(A) + [1 - O({x})I 6(x,A)

and define a measure . ) on (t+',Bd by P.
r.

4(x,Aox'"xAd) = f 8(x,dxo) f 4{x01dx1) f [(Xd- 1 ,dXd)
Ao A, Ad

It follows from (3.2) and (3.25)-(3.27) that

p(klk+d)(xAp-x,A ) > f F(X) exp Ud1) (x,d>X) (3.28)
XEA4x,y), Tk+d-.

yEA

for all xEE and AEB.

For every n = 1,...,d and x,yEE let

Mn(x,y) = ((XO,...,Xd)EAd(Xy): X. 1  y , Xk = y V k =n,...,d

Then from (3.28)

P~~~)d Ud(>) xdx 32):.
P(k'k+d)(x,A) E > f F(X) exp X) . (3.29)

n-I XEM,,(xy), Tk+d-I
yEA

For every n = 1,...,d let f1T(') be the projection map from Ed+" to E', and for

..

• 1%
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every XEEi let VIk(x,.) be the image measure of (x,-) under 11.(-); also let

x*1. = (x,...,x).

n copies

Then applying Fubini's Theorem to (3.29)

pkkd(x,A) f fk(x,y) O(dy) (3.30)
A

where

fk(X,y) = f i(,'d-,, exp [- 1 k(x, dX) .(3.31)

Now by the Radon-Nikodym Theorem we have

p(k~k+d)(X,A) f fP(k~k+d)(X,y)d) + P(k~k+d)(X,) (332

A

where 0i(-) and P~k~k+d)(X,-) are mutually singular. It follows from (3.30) and

(3.32) that

fp(k~k+d)(X,y) q(dy) f fk(x,y) 4 (dy)
A A

for all XEE and AEB, and so

p(k~k+d)(X,y) fk(X,y) (.3

for all xEE and 4 -a.e. yEEi, and consequently there is a version of p (k~k+d)(.,.)
such that (3.33) holds for all X,yEE.

Fix c > 0 and u,vEE. For each x,yEE if Vd(u,v) < oo let

N.(x,y) ={XEL1.M.(x,y): IJ(X) < Vd(u,v) + f}

for n 1,...,d, and set

g(,)fiXY'd.l )(x,) (334

n-i N.(x,y)

if Vd(u,v) oc0 set g(x,y) 1. Then from (3.31)

Vd(u,v) + 6
fk(X,y) g(x,y) exp TV x,yEZ. (3.35)

We make the following 4
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Claim There exists a neighborhood B of (u,v) in Ex such that

int g(x,y) > 0.
(xly)EB

Suppose the Claim is true. Then by setting BU,V = B and

and combining (3.33) and (3.35) we obtain the Theorem. It remains to prove
the Claim.

Proof of Claim Assume Vd(u,v) < oo. From (3.19) there exists XEAd(U,v)
such that Ud(X < Vd(ulv) + E, and since i(X) > 0 there exists 6 > 0 such that
F(X) > 8. Also from (3.19) we must have u 96 v, which implies there exists an

nE{1,...,d} such that XEM.(u,v). It is clear X can be chosen such that all of

the self-transitions in X which occur before the nth transition (which is not a
self-transition) occur consecutively. We consider here the following case (the
other cases are similar):

X = (u = u0 = =urn..1 $ Urn 76 ** Un.. 1 #4 = u.+i = V).5'

where .i < m < n < d. Using (A4), (A6)_and Lemma 3.3 we can choose.
neighborhoods BU of u, BV of v, and Bk Of Uk for k = m,...,n-1 with
Bn1 flBv~ 0, such that for every xEB,, and yEBv we have
Ud(o) < Vd(u,v) + e and i(a) > J5 for all cE{x~m x Brn x .. x B.- {ydXl

Let

0 {} x Br x ... x B 1  V x,yE-7,

and B =BU x BV. Then for every (X,y)EB we have 0., CN.(x,y) and hence
from (3.34) ,.

g(x,y) f 8 V).x,dX)
oz.V

> 0

by (M3). This proves the Claim and hence the Theorem. 0

. .
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3.4.2 Visiting of Neighborhood of the Set of Global Minima with

Probability One

We now give a theorem whichs gives conditions such that annealing

chain {fk} visits a given neighborhood of S infinitely often with probability N?

one. Let e >0 and

s, =---{x E: U(x) < inf U(y) + e}
yEEv

To avoid trivialities we will need the following assumption:

(P) Every iEZ\S, can reach some jES,.

Let

V -sus inf V(x,y) .xEE S, YES, :

Note that under (A1)-(A4) and (A6) (so that E\S, is compact and by

Proposition 3.4 V(.) is upper semicontinuous) (P) holds iff V* < 00.

Theorem 3.4 Assume (A1-(A7) and (P). Let {Tk} be monotone

nonincreasing and

E exp 00 (3.36)k-I Wk .

for some 6 > 0. Then P{ kS , i.o.} - 1 for all e > 0.

Proof We first show that there exists dENsuch that

mt > ~ xy M (3.37)V E" Y E S,S, Inf Vd(X,y ) - -- 0.7
--~S yES, 2 0

For every xEE\S, there exists a d(x)C such that

inf Vd(,,)(x,y ) < inf V(x,y) + - < V, + .YES, yES, 2 - 2

But by Proposition 3.4 for every xEE\S, Vd()(*,° ) is an upper semicontinuous

function on Ex and so inf Vd()(',y) is an upper semicontinuous function onYES,

E, and consequently there exists a neighborhood B, of x such that

inf Vd(.) (u,y) < V, + - V uCB
yES, 2

Now {Bxf(E\S,) : xEY\S,} is an open cover of compact E\S, (in the relative

topology) and so there exists xl,...,XNEF\S, such that

%S

• . .:--0
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N
E\Se C. U IB 1 .

Let d = max d(x,). Now it is easy to see that for every xEE

inf V.(x,y) inf Vm(x,y) V n >m.
YES, YES,

Hence for every xES

inf Ve-(x,y) =min inf V,,(x,y) < V +
YES, n<d* YES, 2

and (3.37) follows by setting d =d ~

Next, from Theorem 3.3 for every u,vEE there exists a neighborhood BU,

of (u,v) in Ex and a positive number K(u,v) > 0 such that

p (k~k~*Yd(X,y) > K(u,v) exp [ dUV + ]/ V (x,y)EB.,.
Tk~d-I

Let

k Ekd' Ok =exp HTdd
and

C'(Xly) = Vdj(Xly) + V X,yEX. (3.38)
2

Then {Ik} is a Markov chain with 1-step transition functions {ky}whose
0-absolutely continuous components have densities {Pk(".)) which satisfy

Pk(Xly) K(uiv k~UY V (xjy)EBu, V u,vEE .

Let

a = s inf a(x,y) .
XE ,YES,

By (3.37) and (3.38) a < V + &. Hence since {Tk} is nonincreasing the
divergence of the series in (3.36) implies that

k-i

Hence we may apply Theorem 3.1 to {VO with Y =S, to get

P{ZkES, i.o.} 1 and So P{~kES, i.o.} 1. 0
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Remark If EI is finite, k)is counting measure, and e is small enough we

obtain Theorem 2.9 modulo the factor of 8 in (3.36) as compared with (2.67).

F J..

% %4
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CHAPTER IV
DIFFUSION TYPE ALGORITHMS

4.1 Introduction to the Langevin Algorithm

In Chapter 2 we discussed the annealing algorithm proposed by
Kirkpatrick et. al. [19] and Cerny [3] for combinatorial optimization. In 0

Chapter 3 we extended the annealing for optimization on general spaces.
Motivated by image processing problems with continuous variables, Geman
and independently Grenander [13] have recently proposed using diffusions for

optimization on multidimensional Euclidean space. In this Section we
describe this method. Like the annealing algorithm, this approach to global
optimization has generated alot of interest and there already exists a -:

significant literature on the subject.

Let U(-) be a nonnegative continuously differentiable function on R. The
goal is to find a point in Ir which minimizes or nearly minimizes U(). Let •

T(-) be a positive Borel function on [O,oc). As with the annealing algorithm
we shall refer to U() as the energy function and T() as the temperature .,

schedule. Let w() be a standard r-dimensional Wiener process and let x(-) be

a solution of the stochastic differential equation
dx(t) - - VU(x(t))dt + V T(t) dw(t) , t > 0, (4.1)

for some initial condition x(O) = x0 (by a solution we mean that x() is a

separable process with continuous sample paths with probability one, x() is

nonanticipative with respect to w(), and x() satisfies the Ito integral

equation corresponding to (4.1)). For a fixed temperature T(t) = T > 0, (4.1) .
is the Langevin equation, proposed by Langevin in 1908 to describe the
motion of a particle in a viscous fluid. Geman and Grenander suggested that
(4.1) could be used to minimize U() by letting T(t)--O. Following Gidas' [111
notation, we shall call the algorithm which simulates the sample paths of x(-)
with T(t)--O the Langevin algorithm.

The motivation behind the Langevin algorithm is similar to that of the

annealing algorithm. Let xT() be the solution of (4.1) with T(t) = T, a
positive constant, and let pT(,,) be its (stationary) transition function, i.e.,

""7 ""-"--7
" x ' -- '-' "a ' ., '- " -' '" '. • "- '- - "-"' "-" "•" " ". ', , , •  

" " "IJt "  
' . " 'rV' ' V ,  S .
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for every t > 0 and AC]r pT(t,',A) is a Borel function on V

* for every t > 0 and xERr pT(t,x,.) is a probability measure on

* PW(tx'A) x P(sx ' dy) p w(t - s,y,A) for all 0 < s <t, xClr, and

ACir

p p{xT(t)EAkxT(s)} = pT(xT(s),A) w.p.1 for all 0 < s < t and AEBr

Under certain conditions (c.f. [31]), pT(.,.,.) has an invariant Gibbs measure

HT() i.e.,

IT(A) f (dx) pT(tx,A) V t 0, V ACBr ,

where

f exp(- U(x)/T) dx

-T(A) - A V ACVr,

f exp(- U(y)/T) dy

and furthermore

p{xT(t)E'}--T(") weakly as t---c'c . (4.2)

Now for suitable U(-)

1-T(')--['(.) weakly as T--O (4.3)

where fl*(-) is a probability measure on (r,Br) with support in the set S of

global minima of U(-); see [17 for conditions under which (4.3) holds and a

characterization of [l*(') in terms of the Hessian of U('). In view of (4.2) and

(4.3) the idea behind the Langevin algorithm is that by choosing T =T(t)--

slowly enough hopefully 0

P{x(t)EC - HiT(t)(") (t large)

and then perhaps

P{x(t)E}--.]*(') weakly as t-c (4.4) S

and consequently x(t) converges to S in probability.

The Langevin and the annealing algorithms both have a stochastic

descent behavior whereby "downhill" moves are modified probabilistically by

"uphill" moves with fewer and fewer uphill moves as time tends to infinity

and temperature tends to zero. However, the simulations of these Monte

Carlo algorithms are quite different. To simulate sample paths of x(') we

might discretize (in time) the Langevin algorithm as

% 'V%0
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= - VU(x )E + w2T(kEWk (.

where {Wk} is a sequence of standard Rr-valued Gaussian random variables

and E is a (positive) discretization interval, and simulate sample paths of {xk}

by generating pseudorandom Gaussian variates. VU(') may be computed

from an analytical formula or approximated in a standard fashion. Compare 0

this simulation with that of the annealing algorithm (see Chapter 2).

Geman reports some encouraging numerical results have been obtained

by Aluffi-Pentini et. al. [32] with a modified Langevin algorithm which uses an

interactive temperature schedule. Tests have been run on U(-) defined on V
with r = 1,...,14. Gidas also reports a numerical experiment with a single U(')

defined on Rwith 400 local minima. He suggests that a combination of the

Langevin algorithm with the popular multistart technique (c.f. [291) might

improve the performance obtained by using either approach alone. We

remark here that comparing different global optimization algorithms is in

general a very difficult problem. Rubenstein [29] discusses some analytical

methods for comparing different algorithms. Dixon and Szego [51 have

attempted to define a standard set of test functions which might be used to

empirically compare different algorithms. It is not clear that either of these

methods are suitable for evaluating the performance of the Langevin

algorithm. These tools it seems were designed to compare algorithms which in

some way take advantage of the structure of smooth functions on low

dimensional spaces. We regard the Langevin algorithm as a "universal"

algorithm which may be used on functions defined on high dimensional space

whose structure is essentially unknown or cannot be simply characterized. It

seems that the best test for the Langevin algorithm is the particular problem

one wishes to solve.

We shall now outline those convergence results for the Langevin

algorithm which are known to us. We refer the reader to the specific paper

for full details.

Geman and H~wang [9[ were the first to obtain a convergence result for

the Langevin algorithm. They consider a version of the Langevin algorithm

restricted to a compact subset of 1r (using reflection barriers). They show

that for a temperature schedule of the form S

T(t) c (t large)

log t

that if c is no smaller than the difference bttwf,,,n the maximum and

minimum values of U(') then (1.4) is obtained.
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Gidas [11 has obtained necessary and sufficient conditions for the 4'

convergence of the Langevin algorithm in all of r, using partial differential
equation methods. He shows that there exists a constant A such that for
temperature schedules T(t)10, (4.4) holds iff

00f7expr d t 1 c

Furthermore, the constant A' is the natural continuous analog of Hajek's

constant (see (2.10)). Chiang et. al. [41 have also obtained sufficient
conditions for the convergence of the Langevin algorithm in all of r using

large deviations theory.

Kushner [211 has obtained a detailed picture of the asymptotic behavior
of a class of diffusions related to the Langevin algorithm and certain discrete-

time approximations as well. Kushner considers (in discrete-time) an
algorithm of the form

Xk+l = Xk + akb(Xk, k) + V2 akO(Xk)Wk (4.6)
.4'

where {k} is a sequence of bounded random variables and

C
ak (k large)"

log k (lre-

In the special case where b() = a{b(',k)} = - VU() and C(') = 1, (4.6) is a

stochastic approximation version of the Langevin algorithm with noisy
measurements of VU(-). We shall refer to the Monte Carlo algorithm which
simulates the sample paths of {Xk} as Kushner's algorithm.

We remark that the conditions under which the above results are

obtained typically include

(i) U(') has continuous second-order partial derivatives

(ii) The local minima of U(-) consist of a finite number of compact
sets; for Gidas' result it is actually required that the local minima

be isolated and nondegenerate.

These assumptions are stronger than these assumed in Theorem 3.4, where it
was only required that U(') be continuous on a compact metric space. Of

course the conclusion of Theorem 3.4 is only that the annealing algorithm
visits a given neighborhood of S infinitely often with probability 1, whereas

the above results show convergence of the Langevin algorithmIn to S in

probability.

_ 0!
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In this Chapter we shall examine certain issues concerning the Langevin

and annealing algorithms which seem important to us and apparently have
not been considered elsewhere. We proceed as follows. We have seen that
the motivation behind the annealing and Langevin algorithms is quite similar. .1

The first question we would like to answer is:

what more can be said about the relationship between the

annealing and Langevin algorithms?

In 4.2 we shall show that an annealing chain driven by white Gaussian noise
converges in a certain sense to a Langevin diffusion. Now it seems clear that
the annealing algorithm and the Langevin algorithm each have certain
advantages. The Langevin algorithm, for example, looks like (for large time
and small temperature) a gradient descent algorithm, and gradient descent
algorithms and their higher order generalizations such as Newton's algorithm,
which are "local" algorithms in the sense that they use only the value of the
objective function and a finite number of derivatives at the current iterate to
obtain the next iterate, are efficient at finding local minima. The annealing
algorithm, on the other hand, is not strictly "local" in that it uses the value
of the objective function in some set containing the current iterate to obtain

the next iterate. In this sense, the annealing algorithm might be called
"semilocal" or even "global" depending on how much of the objective

function is used. Following the usual thinking behind both the annealing and
Langevin algorithms, the idea is to make large fluctuations initially and small
descent-like moves eventually. In view of these considerations, the second
question we would like to answer is:

is there a natural hybrid algorithm whose initial behavior resembles 0

the annealing algorithm an whose large time behavior is similar to
the Langevin algorithm?

In 4.3 we propose such an algorithm based on the results of 4.2.

4.2 Convergence of the Annealing Chain to a Langevin Diffusion

In this Section we shall examine the relationship between the annealing
and Langevin algorithms. We shall show using a result of Kushner's 221 on N;
the weak convergence of interpolated Markov chains to diffusions that a

parameterized family of annealing chains driven by white Gaussian noise
interpolated into piecewise constant processes converge weakly to a time-
scaled solution of the Langevin equation. The weak convergence here is in
the sense that the probability measures induced by the interpolated chains on
the path space of functions without discontinuities of the second kind

%. -" .-
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converge weakly to the probability measure induced by the limit diffusion.

This technique is the same one used to justify the popular diffusion

approximation method, whereby a complicated possibly non-Markovian

process is approximated by a simpler diffusion process (c.f. [23 ).

Let Dr[O,T] denote the space of Rr-valued cidlig functions on [O,T' with

0 < T < oc, i.e., functions which are right-continuous on I0,T, have left-hand

limits on (0,T], and are left continuous at T. The following elementary results

on weak convergence of probability measures may be found in 2?. There is a

metric dT(',) on Dr[0,T] with respect to which DrT O,T is a complete separable

metric space, and if f(-)EDr[O,T] and {f,()} is a sequence in Dr[0,Tj then the

convergence of f.(-) to f(-) in Dr[0,T] implies convergence at all points of

continuity of f() (convergence of f.(-) to f(-) in DT [0,TJ is roughly equivalent to

uniform convergence outside of any neighborhood of the discontinuity points

of f()). Let f(), { () : E > O} be processes with sample paths in DrO,T', or
equivalently, random variables which take values in DrO,T , and let %

p(), { c() : > 0} be the probability measures they induce on the Borel

subsets of Dr[0,T]. We shall say that ,() converges weakly to () in DrO,T."

and write (.).. (.) weakly (in Dr[o,T) if p() converges weakly to ti() as

E--- , i.e., if

lim f f(x) du,(x) = f f(x) d/u(x) S

for all bounded continuous f() on Dr[0,T]. Let Dr[O,oc) denote the set of W-

valued functions on [O,oc) which are right-continuous on [0,x) and have left-

hand limits on (O,oc). Let
on 1 "S

d(f,g) = .d(f,g) V fgEDr[,x
S2"

d(-,-) is a metric on Dr[O,oO) with respect to which DrO,_x) is a complete

separable metric space, and we can define the weak convergence of processesr 0,r r0 it T finite.
with sample paths in Dr[0,x) analogously to D , T with T

Suppose (._() weakly (in Dr'O,Tl) as 6--O with 0 < T _ x. Then it

can he shown that the set of points tCFO,Tl such that p(' (t) € (t)}) > 0 is

at most countable. Let
C = t0T: j((t_...) X c(t)}) .0;

Then it can also be shown that for any points t ...... k(C the multivariate

distributions of {f,(t1),...,,(tk)} converge to the miltivariate dist ribut ions (f

{(t l..tk) as E-O. But the weak convergence of () to ) says much"

more than this: if f() is a continuous functional on DrO,T ' (or juist ,-a.s.

% % %
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continuous) then f( ())--.(()) weakly as E--+O.

Let Cr[0,T] denote the space ofr-valued continuous functions on [0,T]
with 0 < T < cc. If we equip Cr[0,T] with the uniform topology for T <cc hi.

and with the topology of uniform convergence on compacts for T = oc, then
Cr[0,TI is a complete separable metric space and we can define weak
convergence of processes with sample paths in Cr[O,T]. Our reason for using
Dr[0,TJ is simply that we shall make use of Kushner's result on the weak
convergence of Markov chains interpolated into Dr[0,T]. Kushner's stated
reason for working with Dr[o,T] as opposed to Cr[0,T] is that it is easier to
verify tightness (relative compactness) for a sequence of probability measures
on the Borel subsets of Dr[0,T]. If the limit process is a jump diffusion then of
course it would be necessary to work with Dr[0,T], but this is not an issue
here since our limit processes are assumed to be ordinary (continuous sample
paths with probability one) diffusions.

We now set up the notation necessary to state Kushner's Theorem on the
weak convergence of interpolated Markov chains. It will be notationally .
convenient in the sequel to assume that all processes are defined on a common
probability space (Ql, F, P) and we shall do so without further comment. Let
0 < T < co. Let F(',') and F,(',-), E > 0, be lr-valued Borel functions on
Rrx[o,T], and let G(',-) and G,(','), E > 0, be rxr matrix-valued Borel functions
on l x[0,T]. For each E > 0 let { } be a Markov chain with state-space Rr .

such that

- -)( +I - )"= Gk G:(,ke)E

with probability one. Interpolate {} into a process () with sample paths r

in Dr[0,T] by

,(t = V (k-1)f < t < kc , V k - ,.,*.

Here is Kushner's Theorem in slightly modified form.

Theorem 4.1 (Kushner [221). Assume

(K1) F(-,-), G(-,') are bounded and continuous

(K2) F,(-,-), G,(',') are uniformly bounded for small E > 0

% %%
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(K3) El E [ ,(,ke)-F((,kE 1 G ~,ke)-G(,k)12 0

as e--O

(K4) E +-k-F(k,k -* 0

as E-*O for some ce > 0.

Let v(') be a standard r-dimensional Wiener process and assume that 0

d (t) = F( (t),t)dt + G( (t),t)dv(t), 0 < t < T ,

has a unique solution (') (in the sense of multivariate distributions) with -.

initial condition (0) - 0. Assume that

- n weakly as E-- O.

Then "

()---() weakly (in Dr[0,T]) as E-0O

Consider now the following family of Markov chains. Let U(') and T(')
be defined as in 4.1. For each e > 0 let {z'} be a Markov chain with state
space r and 1-step transition functions {P'(',')} given byt

P(x,A) = f s (x,y) dN(x,EI)(y) + -/k(x) J(x,A) (4.7)
A

for all xERr and AEr, where

tsee Chapter 3 for general state space Markov chain notation

0N

a

* . * . % ~ - -- - - -
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I exp [ T(Y) - IJWx if U(y) > U(x)

s~(~y) = Tk~)if U(y) UNx) (4.8)

= 1 -x f sk'(x,y) dN(x,EI) (y) ,(4.9)

and 6(x,-) is the unit measure concentrated at x, for all x,YER?. Comparing
(4.7) and (3.2) it is seen that f{z'j is infact an annealing chain of the type
introduced in Chapter 3 with state space the measure space (Y,B,q5) where

r~, B V, 0() is Lebesque measure, and

Q(x,A) =f q(x,y) q(dy) N(x,EI) (A) V AE
A

(hence the annealing chain is "driven" by white Gaussian noise). It will be
convenient to introduce the following notation. For each e > 0 let O

U(Y) - UNx)
s~~yt)= xt if U(y) > U(x)

{;XP if U(y) U(x) ,A

-y(xt 1 -f s(x,y,t) dN(x,eI) (y),

for all x,y(EI and t > 0, and let

Pj(x,A,t) =f s(x,y,t) dN(x,EI) (y) + 'Y,(x,t) &(x,A)
A I

for all xEIY, AEV, and t > 0. Then

P,(x,A,ke) =P&(,A) V XEf, V ACV .

For each e > 0, xEIr and t > 0 let

b, (X,t) = if (y - X) P,(x,dy,t),

a,(X,t) = - f (y - x) ® (y - x) P,(x,dy,t)
E

and a((x,t) be a positive square root of aj(x,t) i.e.

O,(x,t)J:,(x,t) = a,(x,t)

Since P,((y,kE) =P'(-,) is a (regular wide-sense) conditional distribution for

% %9
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Zk+ 1 given z',
E{z+- zlz} = b,(zj,kE)E

E{(z +I- z) (& (Zl'+l - Z -)IZ} a(Z",kE)o-(z',kE)E

with probability one. Interpolate {zk'} into z,(-) with sample paths in Dr[0,T]

by

Z, .(t) z',. V (k-l)e < t < kE V k =1..

Here is our convergence theorem.
0

Theorem 4.2 Assume

(Al) U(-) is continuously differentiable, V7U(-) is bounded and Lipshitz

(A2) T() is continuous

Let w(') be a standard r-dimensional Wiener process, and let z(') be a solution
Oft -.

dz(t)=- VU(z(t)) dt + dw(t), 0 < t < T (4.10)
2T(t)

with initial condition z(0) = z0. Assume that

z ---*z0  weakly as E---o .

Then

zf()--*z(') weakly (in Dr[0,T1) as E-+O .

Remark Let rQ) be a solution of

4t) = 2T(7 t)), 0 < t < T,

and let
()=z(7 t)) , "k(t) = T(7r t)) , 0 < t < T .

Clearly, i(') is a Markov process with continuous sample paths with
probability one. Now by standard calculations

tit is well known that (4.10) has a (strongly) unique solution under (Al), (A2)

'%

'.,

% %"V

% %.
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E{i(t+h) - (t)Ji(t)} VU(i(t))h + O(h 3 / 2 )

E{(i(t+h) - (t))09 (i(t~h) - i(t)) li(t)} ~ s ds-I + 0(h 2 )

as h-.O, uniformly for 0 < t <T, with probability one. Hence by a Theorem '

of Doob's [6, p. 288] there exists a standard r-dirnensional Wiener process
such that i(*) is the solution of

di(t) =-VU(i(t))dt + \/27k) d*(t) , 0 < t < T . (4.11)

Hence the interpolated annealing chain z,() converges weakly to z(-), which is

infact a time-scaled solution of the Langevin equation (4.11).

We shall need several lemmas before we can apply Theorem 4.1 to prover
Theorem 4.2. Let

1exp IU) YX if (VU(x), y-x) > 0

Iiif (VU(x), y-X) < 0 (4.12)

for all x,yEkT and t >0.

Lemma 4.1 Assume (Al), (A2). Then there exists a constant K such that

Is(x,y,t) - (x,y,t) I K -X 12 , V X)yer, Vo0< t < T .

Proof Let

f(X,y) U(Y) - U(x) - (VtJ(X), y-x) V X~yEr.-

By the Mean Value Theorem and (Al) there exists a constant c such that

If(x,y)j I c ly-X1P V xjyEiRY
and by (A2) there exists a constant K such that

T(t)

Suppose U(y) - U(x) 0 and (VU(x), y-x) 0. Then [U(y) -U(x) I If(x,y) I
and since 11 ex 1 :5 1 for x < 0
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.d.P

Isx,y,t) - i(X,Y,t) I I exp (t) Ux

< IU(y) - U(x)I I
T(t)

< If(x,y) I.T (t ).

K"y-x 12  Vx,yE Vo < t <T-

The same inequality holds if U(y) - U(x) _< 0 and (VU(x), y-x) > 0. Suppose

that U(y) - U(x) 0 and (VT(x), y-x) 0. Then

I (x ,y ,t) - i(x,y ,t) <: 1 - exp - '- T t) 
.I 

J

-T~t)< f(x~y) I '
T(t)"

<K'y-x F V x,YERr, V 0 < t <;T. S

The Lemma follows by combining the various cases. 0

The following two Lemmas provide the crucial estimates of the local drift

b,(,') and local covariance a,(-,-) of zj(). The simple estimate

f py dN(O,EI) (y) -= O(01 )  as E-*O

for nEN will be used frequently in the sequel.

Lemma 4.2 Assume (Al), (A2). Then

b,(x,t) =- VU(x(t)) + (61. 2  as E-O ,
2T(t)

uniformly for x r , 0 < t < T.

Proof By Lemma 4.1 there exists a constant K such that

Is(x,y,t) - i(x,y,t) I Ky-x 2  V x,yERr, V o < t < T.

Hence

4' .~
4

4F. " . %,
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- f (y-x) s(x,y,t) dN(x,EI) (y)

+ (y-x) (x,y~t (,,t) dN(x,EI) (y)

-- f (y-x) i(x,y,t) dN(x,eI) (y) + 0(C0/2) as 6-0O,

uniformly for xER~ and 0 < t < T. Substituting for (,)from (4.12) gives

1
bf((xt) - / y dN(O,I) (y)

C12 (y,VUj(x)) O

1/ f y exp E /2 dN(O,I) (y) + (/) (4.13)
eli 2 (,VU~x)>O [ T(t) J

as e-*+O, uniformly for xEE and 0 < t < T. Clearly,e

bj~) VU(x) + (E0/2) as E-*.O
b,(x~t) 2T(t) T

uniformly on {xEr : VU(x) ==}Ox[O,T). Hence we may assume that
VU(x) 34 0 for all xER'. Let

a~xt) [IVU(x) I 127(X 12x~)
2 [T(t) jT(t) '(.4

for all xEIR! and t > 0. By (AI), (A2) a(-,-) and ,,)are bounded on

Irx[O,TJ. Now completing the square in the second integrand in (4.13) gives

-7

%0



86

b, (x, t) f y dN(O,I) (y)
E /2 (Y,VU(X))<O

+ 1 f y exp(ca(x,t)E) dN T() 6121(Y) + 1(E/2)
1(y,VU(X))>OT(t

f1 y dN(O,I) (y) + f y dN(O,I) (y)

1/ NYV(,) { (,Uo) 1/ 1(UX),,t)E' 2 + (1/2)

_VU(X) /21/2612

TU() f(VUqX),(C6))

+ -j-[g(VU(X),0(E1/ 2)) -g(VU(X),o)] + O(El/ 2 ) ,(4.16)

as f-oO, uniformly for xekr and 0 < t < T, where

f(u,b) = N(0,I) {y (y, u) u 1uIS,

g(u,b) = f y dN(0,I) (y).
(y,U) Iu 16

To proceed further we need to estimate f(,) and g(-,). We have

f(u,b) = N(O,I) (y : (y,u) : IuIS}
= N(0,1) [(,oo)

1 6f 11/2 e/2d

10

2+ 6) as 6-0 , (4.17)

uniformly for uEr. As for g(-,), we make the following

Claim

g(u,6A (4.18)
(27r)1/2 lulI

for all 6 > 0 and uERT\{O}.

N. 2 2 ' . -. .. . . 2 <



Suppose the Claim is true. Then combining (4.16)-(4.18) gives

bV(UW e ± ~ e . 1 VU(x) + 0(61/ 2)2T(t) (27rE)l/ V(~

±UX +0(E 1'2) as e-.O
2T(t)

uniformly for x~IY and 0 < t < T, and we obtain the Theorem. It remains to
prove the Claim.

Proof of Claim Fix uCr\{0}, let

= iT'V
and extend n, to an orthonormal basis {nj,...,nr} for If~. Also let {,.,e}be
the standard basis for rF, and L(-) be the (orthogonal) linear mapping from WF
into IF such that L(e1) = ni for all i = 1 ... ,r. Applying the change of variable
formula and using the fact that L(-) is an isometry and the adjoint
L*(-) L-1(-) gives

g (u,5  f y dN(O,I) (y)

f (y,ni)ni dN(O,I) (y)

i-i L,n,

r
- ni f (Lz,Ln) dN(,) (z)
i-i (z,Ln ) b

r
- ni f (z,1) dN(,I) (z)

i-1 (z,el) 6 0

=ni f dN(0,1)()

n, 1 expl 2 /2 Id
5 (27r) 1/2 )

- V i>0

(2ir)" 2 jul V.U

This completes the proof of the Claim and hence the Theorem.0
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Lemnma 4.3 Assume (AI), (M2). Then

a,(X~t) = I + 0( 1 /2 ) as E-*O

uniformly for xEIY and 0 < t < T.

Proof' Proceeding as in the proof the Lemma 4.2

a,(x,t) = f (y-x)®& (y-x) P,(x,dy,t)
E

f (y-x)®g (y-x) i(x,y,t) dN(x,EI) (y) + 0(E)

f y® y dN(0,I) (y)

+ f yO y exp (VUI(x),y) E 1/2 dN(O,I) (y) + 0(E) (4.19)
(Y,vu(x))>O T(t) ]

as E--O, uniformly for xEr and 0 < t < T. Clearly,

aE(X,t) =I + O(N as E'

*uniformly on {xER : VU(x) =O~xfo,T]. Hence we may assume that
VU(x) 76 0 for all X(Er' Let ae(*,-), /~*)be defined as in (4.14). Then
completing the square in the second integrand in (4.19) gives

(y,vu(x)) O

+ f y(&y exp (cx(x,t)e) dN V-. U(c) E 1/ 2 1 ~ (Y) + 0 (E)

- f y(&y dN(0,I) (y) + f ygy dN(O,I) (y) ± 0(61/')

-h(VU(x),O) + h(VU(x),0(e"/2)) + o(El/ 2 ) ,(4.20)

as E-.O, uniformly for xcr and 0 < t <T, where

h(u,b) f y(&y dN(O,I) (y).
(y'u) IUIb

To proceed further we need to estimate h(-,). We make the following

% % %
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Claim

hu( I+06) as 6-0(4.21)
2

uniformly for uEkT .

Suppose the Claim is true. Then combining (4.20) and (4.21) gives

a, (x,t) =I + O(CE" 2 ) as c-0 ,

uniformly for xERT and 0 < t < T, and we obtain the Theorem. It remains to

prove the Claim.

Proof of Claim Fix uE~f\{O} and let {nl,...,r}, {e1,...,er}, and L(-) be as in

the proof of the Claim in Lemma 4.2. Then

h(u,0) f y (9 y dN(0,I) (y)

- f I Z(y,ni)n~i0I (y,n)nj dN(0,I) (y)
(y,n,)>o i-I j -I

r

iU-1 (Lz,nh) o

r
V n nn f (z,L *ni) (z,L *nj) d N(0,I1) (y)

ij-i (z,Ln 1 ) O

r
E nin1®nj f (z,e 2 (ze dN(0,) (y)

ij-1 (z,e)O

rr

- n,0nj f 2 dN(0,1) ()+ E7 ni(®ni N(0,1) Ovc---) 0

0 i-2

1 r

- E ni ni
2

i-1

1 (4.22)
2

Similarly,

%0
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h(u,O) - h(u,b) = f y& y dN(O,I)
o<(yu)< u 6

r
r nini f (z,ei) 2 dN(0,I) (z)

i-1<(z,e)<

6 r "
= ni&ni f 2dN(0,1) ( ) + E ni9ni N(O,1) [0,b)

0 i-2

= nl0n I f 2 exp (- '/2)d"
0 (2 7r)~

r 6
+ -E ni ti) ni f exp (- 2/2) d 0

i-2 0 (27F)

= n.&ni'O(") + n' n0ni" 0(b)
i-2

= 0(6) as 6--,0. (4.23)

Combining (4.22) and (4.23) completes the proof of the Claim and hence the

Theorem. 0 "

Lemma 4.4 Assume (Al), (A2). Then '--

O',(x,t) = I + O IE1/ 2 ) as E--
uniformly for xEr and 0 < t < T.

Proof By Lemma 4.3

ae(x,t) - I + O(E 1 / 2) as E--+0 (4.24)

uniformly for x r and 0 < t < T. Since a,(x,t) is self-adjoint, there exists an

orthogonal matrix L,(x,t) such that

a,(x,t) - L,(x,t) A,(x,t) L:(x,t) (4.25)

where

A,(x,t) = diag (l(X,t),...,Xr(x,t)) (4.26)

and the{x,,i(x,t) i = 1,...,r} are the eigenvalues of a,(x,t), i.e., the solutions
of det(XI - a,(x,t)) 0. Now if A [aij ] is a real rxr matrix then det A may

be expressed as 4 jes

%
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det A = sgn(p)-al, a~p (4.27)
p - Pi)EP

where P is the set of permutations of {1..r.Setting A =XI -a,(x,t) and

combining (4.24) and (4.27) gives

det(XJ - a,(x~t)) = (X - 1)r + (X - )r1I 0(E 1 ) + -- + Er1

and so

k1('(x't) -1 r = (max{ IX,,i(x,t) - 1 r- ,lIr/1

and consequently

\1 ,(x,t) = 1 + 0(d"2 ),

and since (I +±)/ ()a _O

,\/ 2 (X,t) =1 + 0(El/ 2) as E--O ,(4.28)

uniformly for xCW and 0 < t < T. Let

Then by (4.25) a,(x,t) = o(x,t) oc4(x,t), and by (4.26), (4.28), and the Schwartz

inequality,

0r,(X,t) =I + O(E1/ 2) as E -0O,

uniformly for xCr and 0 < t <T, as required. 0

Proof of Theoremn 4.2 We shall apply Theorem 4.1 with k= z'k,
()=z,(-), ~) z(-), and

_VU(X)

F(x,t) = 2t) F,(x,t) b,(x,t)

G(x,t) = I , G'(x't) =O-'(x't)

In view of (Al), (A2) and Lemmas 4.2 and 4.4, (1(1) and (1K2) are satisfied.

Now by Lemmas 4.2 and 4.4 there exists a constant c such that for small

enough e > 0

1b, (x, t) + VU(X) j< c Ell,
2T(t)-

Io7,x,t) -1 <j c Ell'

for all xE~r and 0 < t < T. Hence
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E { [ -: [b(z[',kf) + 2T(k)(zkkE)

< Z 2c2 E2 (f small)
k-i

< 2c 2 TE --+ 0 as E--O

and so (K3) is satisfied.

It remains to check (K4). Since P'(-,') is a conditional distribution

function for z'+ 1 given z' we have that for every nENI

Elz'+, - z4I} = E{E{[z'+ - z'rlz'}}

= E{f hy - znr P'(z', dy)}

< E{f IyrIdN(0,EI) (y)}
< C1 f /2

for some constant c.. Hence using the uniform boundedness of b,(,-) for

small c

EI 1z +1 - z' - b,(zIke I < d 2  (E small)
k-i k-I

<dT E -O as E-

for some constant d, and so (K4) is satisfied with a - 2. The Theorem now
S.. follows from Theorem 4.1.

.4
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4.3 Hybrid Annealing/Langevin Algorithm

In this Section we shall give a hybrid annealing/Langevin algorithm
whose initial behavior resembles that of the annealing algorithm and whose

large time behavior is similar to the Langevin algorithm. The development of
this algorithm will be guided by Kushner's algorithm and the results of 4.2 on
the relationship between the annealing algorithm and the Langevin algorithm.
We note that the discussion in this Section is heuristic at points and more
work need to be done.

We shall make use of the notation introduced in 4.1, 4.2. We shall

assume that

T(t) c-- (t large)
log t

where c is a positive constant.

We start by considering Kushner's algorithm (4.6) with b(x, ) = - TJ(x)

and c(x) =I, i.e.,

Xk+l Xk - ak VU(Xk) + V2 akw k  (4.29)

where

c
ak - (k large).

log k

Kushner [21] has shown (roughly) that if c is large enough and the sample
paths {Xk} are bounded with probability one by some device, then Xk

converges to S in probability.

Now consider the discretization (4.5) of the Langevin algorithm (4.1) with
discretization interval e, i.e.,

1 k+ - e VU(xk) + \/2(kc)E Wk. (4.30)

Interpolate {."} into x,(') with sample paths in Dr]0,oc) by

x,(t) = x' V (k-1)E < t < kE, V kENl.

An application of Theorem 4.1 under assumptions (Al), (A2) of Theorem 4.2
shows that

x,() -x(') weakly (in Dr[0, c.)) as 6---xc

Suppose in (4.30) we replace the fixed discretization interval by a. :t.

accumulated time kE by

e. .. .... ..- . ... - . -
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k-1
tk = E

n-i

and define

Xk+i "Xk-ak VU(Xk) + %/"2T(tk)ak wk

By L'hopital's rule and the Fundamental Theorem of Calculus

C C c
T(tk) k-k log k

log E a. log f do l

n-i 2 x

as k-+oo. Hence we may write

Xk+1 fXk -ak V(Xk) + '/2 kWk (4.31)

where ik - ak. In view of (4.29) and (4.31) it seems clear that we may

identify {Xk} and {Xk} as essentially the same algorithm, and so we can view
{Xk} as arising from a discretization {x') of the Langevin algorithm x(') with
a nonstationary discretization interval e = ak, at least for k large enough.
Note that the weak convergence of xj() to x(-) in Dr[0,00) as &-*O does not
imply that {Xk} and x(') (and presumably {Xk} and x(-)) have "close"
asymptotic measures, from which we might conclude that the convergence of
Xk to S in probability as k-*oo follows from the convergence of x(t) to S in

probability as t-*oo (c.f. [231 for a discussion of asymptotic measures and the
relationship to weak convergence). However, the weak convergence of x,(') to
x(') in Dr[O,oo) as e---O and the convergence of x(t) to S in probability as
t-* does provide a certain intuitive basis for the convergence of Xk to S as
k-*oo in probability, which infact Kushner proves.

Using the above interpretation of Kushner's algorithm (4.29) as a certain
discretization of the Langevin algorithm (4.1) we now proceed to construct a
hybrid annealing/Langevin algorithm. For each E > 0 define an Ir-valued
discrete parameter process {y'} as follows. Let

Yk'+Ii = Yk + V2T(k€) mk' Wk

where {mk} is a sequence of {0,1}-valued random variables such that m' is
conditionally independent of y ......y'- w gI .. ,k 1, w D...W k-1, and m l..... m k 1  given

yk, Wk, and
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P{Mk Y k W e I [U(y+V 2TNie5E w)__-__ _ _ _ _ *
P{m4 = l~y= y, wk = w} = exp - T(ke)

where we use the notation [a]+ = max{O,a} for aER A calculation shows that
{yk} is a Markov chain and

P{y'+ 1 EA y = y} f s'(y,z) dN(y,2T(kE)EI) (z) + %(z) 8(z,A) (4.32)

A

for all yEkf and AEBr, where s'(',-) is given by (4.8) and %(') is given by the
r.h.s. of (4.9) with eI replaced by 2T(ke)eI. Comparing (4.32) and (4.7) we see
that {y'} like {z'} is an annealing chain driven by white Gaussian noise,
except that the noise driving {y' } is non.stationary with covariance 2T(kE)EI.
Interpolate {y'} into y,(') with sample paths in Dr[o,oo) by

yf(t) = y" V(k-1) < t < kE, V kEN.

In Theorem 4.2 we gave conditions such that

z,(-)--+z(-) weakly (in Dr[0,TI) as e--+o ;%%

minor changes in the proof of Theorem 4.2 show that 4.

y,(-)--+x(') weakly (in Dr[O,oo)) as e--o

under the same conditions.

Now define an Rr-valued discrete parameter random process {Yk} as
follows. Let

Yk+1 = Vk + V1 akMkwk •

where {Mk} is a sequence of {0,1}-valued random variables such that Mk is
conditionally independent of Yw,...,Yk_,l,...wlWkl-, and Ml,...,MkI given

Yk, wk, and

[U(y +V1- akw)-U(YI
P{Mk=1IYk=Y, Wk W}=exp{-k y) *44*

a.

By similar reasoning as with {Xk} we may view {Yk} as arising from a
discretization {y'} of the Langevin algorithm x(') with a nonstationary
discretization interval e = ak, at least for k large enough. We shall call the
algorithm which simulates the sample paths of {Yk} the hybrid
annealing/Langevin algorithm.

We shall now make a few comments concerning the convergence of the
hybrid annealing/Langevin algorithm. The weak convergence of y,(') to x(')

in Dr[O,oo) as e--O and the convergence of x(t) to S in probability as t-v'.

V.':.,.
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does provide an intuitive basis for the convergence of Yk to S in probability as
k-oo. This intuition is further bolstered by the convergence of Xk to S in
probability as k-oo. Unfortunately, we have not been able to establish the
convergence of {Yk}. One approach which might be fruitful is to try to adapt
Kushner's proof of the convergence of {Xk} (we have not tried this). Our idea
which we did not succeed in developing was to try to obtain the asymptotic
behavior of the {Yk} process directly from the asymptotics of the related x()

process. This is similar in some respects to the associated ODE method used
to analyze stochastic approximation algorithms (c.f. [24]), whereby the
asymptotics of the stochastic approximation algorithm are obtained from the
asymptotics of the "limit" process which satisfies an ordinary differential
equation. However in our problem the "limit" process x() satisfies the
stochastic differential equation (4.1). Without going into details it now
appears to us that the nonstationarity of x(') makes it very difficult (if not
impossible) to extend the associated ODE method to prove convergence of
IVk}

It is interesting to compare the 1-step transition probabilities for {Xk}
and {Yk}. Let N(m,A)() be an r-dimensional Gaussian density with mean m
and positive definite covariance A, i.e.

N(m,A)() 1r)r/2 1 1/2 - exp - ( -m, A(&-m))/2,

(27rr/(det A)"L
for all CERI. Then we may write

P{Xk+lEAIKk = 7} = f f(m,) dC
A

P{Yk+EAIYk = 77 = f g(r/,C)d + j(tq) 6(77,A)
A

for all 77Elr and AEr, where

f =77,C)-- N(i+akVU(7j),2aI) ( )

_ [U(M) - U()]+ 2 ) g)
g(7,) -- exp -i-,2a

ak

for all q, E] R. In Figure 4.1(a) we show a bimodal U() defined on IL The P

points CD C2, 3 are solutions of U(C) = U(77) for a fixed q. In Figure 4.1(b) we
sketch f(i,). In Figure 4.1(c) we sketch g(7,); we also show the unweighted
Gaussian density N(?,2ak)() and the atom at 7 with mass -(?7). These

.
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figures make clear the "local" behavior of the Langevin algorithm versus the
"semilocal" behavior of the hybrid annealing/Langevin algorithm as discussed
in 4.1.
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CHAPTER V
CONCLUSIONS

5.1 Summary of Results

We summarize the results of this thesis as follows.

(i) We analyzed the rate. of convergence in probability of the annealing
chain for a special case of an energy function with two local minima. We
obtained convergence rates for nonparametric temperature schedules ,'
(Theorem 2.8), and also for parametric temperature schedules Tk = c/log k
for c > A* where A* is Hajek's optimal constant (Corollary 2.2). There are
two factors which limit the rate of convergence in probability. One factor
corresponds to the rate at which the annealing chain makes transitions from
one local minimum to the other and back. For temperature schedules
Tk = c/log k this factor dominates whenever c >A*. The other factor

corresponds to the rate at which the annealing chain makes its first transition a

from the strictly local minimum to the global minimum. For temperature
schedules Tk = c/log k this factor is only important when c = *. We gave
explicit expressions for the characteristic time scales associated with each of
the rate limiting factors.

(ii) We analyzed the sample path properties of the annealing chain. We
gave conditions such that the annealing chain visits the set S of globally
minimum energy states with probability one (Theorem 2.9), visits S with
probability strictly less than one (Theorem 2.10), and converges to S with
probability one (Theorem 2.11).

(iii) We gave a modification of the annealing algorithm so as to allow for
noisy measurements of the energy differences which are used in selecting %

successive states. This is important when the energy differences cannot be
measured exactly or when it is simply too costly to do so. We focused on the
case when at the kth time step the energy difference between the candidate
and current states is measured with additive Gaussian noise with mean 0 and
variance 01. We showed that if o = o(Tk) then the asymptotic behavior of

the modified annealing algorithm is essentially the same as that of the
unmodified annealing algorithm (Theorem 2.12, Corollary 2.3).

%i % %

% %1
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(iv) We extended the annealing algorithm for optimization on general

spaces. We generalized our result on the finite state annealing chain visiting
the set S of globally minimum energy states with probability one (Theorem
2.9) to the general state annealing chain visiting a neighborhood of S with
probability one (Theorem 3.4), essentially under the conditions that the state

space be a compact metric space and the energy function be continuous.

(v) Our most important results concern the relationship between the

annealing and Langevin algorithms. We showed that a parametric family of

annealing chains driven by white Gaussian noise and interpolated into

piecewise constant processes converge weakly to a time-scaled Langevin
diffusion (Theorem 4.2). Although both the annealing chain and Langevin

diffusion at a fixed temperature have a Gibbs invariant measure, the weak

convergence seems to us to be a rather surprising result. Motivated by this

convergence result, we proposed a hybrid annealing/Langevin algorithm,
whose small time behavior resembles that of the annealing algorithm and

whose large time behavior is similar to the Langevin algorithm.

6.2 Open Questions

We list here some questions which naturally follow from our work.

(i) Is their an extension of Theorem 2.8 and Corollary 2.2 on the rate of

convergence in probability of an annealing chain with an energy function with
two local minima to energy functions with an arbitrary number of local

minima? Also, in Theorem 2.8 do the conditions (2.54), (2.55) suggest the

kind of regularity in the temperature schedule which guarantees fast
convergence (recall that only (2.53) is required for convergence)? Also, in view

of the relationship discussed in Chapter 4 between the annealing and

Langevin algorithms, is it possible to establish rates of convergence similar to

those in Theorem 2.8 and Corollary 2.2 for the Langevin algorithm with a
smooth energy function with two local minima?

(ii) Does the general-state annealing chain converge in probability to the
set of globally minimum energy states, assuming only that the state space is a

compact metric space, the energy function is continuous, and suitable
conditions on the temperature schedule?

(iii) Finally and most importantly, does the hybrid annealing/Langevin

algorithm converge, and does it indeed improve on the performance of the
annealing and Langevin algorithms?
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